REPORT ON THE ENVIRONMENTAL IMPACT ASSESSMENT OF THE BALTICA-1 OFFSHORE WIND FARM

APPENDIX 3 THE NUMERICAL MODELLING OF THE PROPAGATION OF NOISE FROM THE PILE-DRIVING IN THE BALTICA-1 OWF AREA

AUTHORS:

Marta Nocoń, Jonas Von Pein, Magda Chreptowicz, Urszula Sadowska-Maksym, Frank Thomsen

CONTRACTORS:

Natalia Kaczmarek, Mateusz Kunicki, Teresa Moroz-Kunicka, Kamila Gałka, Dominika Górnowicz

TABLE OF CONTENTS

ABBREVIATIONS AND DEFINITIONS			19	
1 NON-SPECIALIST SUMMARY			-SPECIALIST SUMMARY	21
	1.1	Tł	he northern location	22
	1.2	Tł	he central location	24
	1.3	Th	he southern location	25
2	I	NTRC	DDUCTION	27
3	Ν	ЛЕТН	HODOLOGY	28
	3.1	G	eneral approach	28
	3.2	Tł	he relevant model parameters	29
	3.2	2.1	Sound levels	29
	3.2	2.2	Frequency weighting	29
	3.2	2.3	Cumulative sound exposure level	30
	3.3	Tł	he approach to construction noise assessment	31
	3.3	8.1	Definition of the sound source	31
	3.3	8.2	Numerical modelling of noise	33
	3.3	8.3	Noise mitigation	39
	3.3	8.4	Noise levels at the boundary of the Natura 2000 area	41
	3.3	8.5	Impact on the Natura 2000 site	42
	3.3	8.6	The propagation modelling of noise from piling at several locations (the cumulative model)	42
	3.4	Tł	he calculation of biological impacts	43
	3.4	1.1	Threshold values used in the modelling	44
	3.4	1.2	Impact ranges and areas	45
	3.4	1.3	Additional parameters	45
4	т	HE N	MODELLING RESULTS FOR THE NORTHERN LOCATION	47
	4.1	Tł	he modelling of noise propagation for piling in a single location	47
	4.1	.1	The level of exposure to sound generated by a single blow	47
	4.2	Tł	he modelling of noise propagation as a result of piling in several locations	75
	4.2	2.1	Harbour porpoise	75
	4.2	2.2	Grey and harbour seal	96
	4.2	2.3	Fish with swim bladders	116
	4.3	N	oise levels at the boundary of the Natura 2000 area	129
	4.3	8.1	Piling in a single location	129
	4.3	3.2	Piling in several locations	136

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm

A	рре	ndix	3 – 1	The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF	area
	4.4	Ļ	Imp	act on the Natura 2000 site	. 158
5		Тн	е мс	DDELLING RESULTS FOR THE CENTRAL LOCATION	.159
	5.1		The	modelling of noise propagation for piling in a single location	. 159
		5.1.1	1	The level of exposure to sound generated by a single blow	. 159
	5.2	-	The	modelling of noise propagation as a result of piling in several locations	. 167
		5.2.1	1	Harbour porpoise	. 167
		5.2.2	2	Grey and harbour seal	. 172
		5.2.3	3	Fish with swim bladders	. 177
	5.3	5	Noi	se levels at the boundary of the Natura 2000 area	. 180
		5.3.1	1	Piling in a single location	. 180
		5.3.2	2	Piling in several locations	. 183
	5.4	ļ	The	impact within the Natura 2000 site	. 188
6		Тн	E MC	DDELLING RESULTS FOR THE SOUTHERN LOCATION	.189
	6.1		The	modelling of noise propagation for piling in a single location	. 189
		6.1.1	1	The level of exposure to sound generated by a single blow	. 189
	6.2	2	The	modelling of noise propagation as a result of piling in several locations	. 197
		6.2.1	1	Harbour porpoise	. 197
		6.2.2	2	Grey and harbour seal	. 202
		6.2.3	3	Fish with swim bladders	. 207
	6.3	6	Noi	se levels at the boundary of the Natura 2000 area	. 210
		6.3.1	1	Piling in a single location	. 210
		6.3.2	2	Piling in several locations	. 213
	6.4	ŀ	Imp	act on the Natura 2000 site	. 218
7		Тн	E SUI	MMARY OF THE RESULTS AND CONCLUSIONS	.219
8		RF	FFRF	NCES	.221

LIST OF FIGURES

- ; - - - -	
Figure 3.1.	The potential effects of noise at different distances from the sound source (based on Thomsen et al., 2021) (TTS = Temporary Threshold Shift and PTS = Permanent Threshold Shift)29
Figure 3.2.	A compilation of weighted functions for the groups of cetaceans using high-frequency (HF) sounds compared to M-weighted functions for pinnipeds in the water (PW)
Figure 3.3.	The SEL spectra in the 1/3-octave bands of the modelled piling sound in the Baltica-1 OWF in the example of the northern location
Figure 3.4.	The piling locations within the Baltica-1 OWF for which modelling was conducted34
Figure 3.5.	The noise propagation modelling directions for the Baltica-1 OWF in the example of the northern location
Figure 3.6.	The temperature, salinity, and sound velocity profiles in the Baltica-1 OWF area for the winter season (panel A) and the summer season (panel B) (grey lines – individual profiles; blue line – averaged profile [NOAA World Ocean Atlas, 2023])
Figure 3.7.	The absorption coefficient derived from the model developed by Francois and Garrison (1982a; 1982b) used in the MIKE UAS compared to the simplified model of Richardson et al. (1995). Predictions in the MIKE UAS refer to values in the sound channel (pH = 8 and T = 3.1°C at a depth of approximately 50 m) with salinity as indicated in the legend
Figure 3.8.	Frequency-dependent SEL reduction for a mitigation system in the form of BBC, HSD + DBBC and IQIP + DBBC (Bellmann, 2020)41
Figure 4.1.	The map of unweighted SEL above the acoustic background for a single blow in the area of the Baltica-1 OWF, in the winter (top) and summer (bottom). Grey lines: isobaths
Figure 4.2.	The map of VHF-weighted SPL _{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise, in the winter (top) and summer (bottom)
Figure 4.3.	The map of HF-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise, in the winter (top) and summer (bottom)52
Figure 4.4.	The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.5.	The map of HF-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.6.	The map of VHF-weighted SPL _{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the HSD + DBBC system applied, in the winter (top) and summer (bottom)55
Figure 4.7.	The map of HF-weighted SPL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the HSD + DBBC system applied, in the winter (top) and summer (bottom)56
Figure 4.8.	The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the IQIP + DBBC system applied, in the winter (top) and summer (bottom)57
Figure 4.9.	The map of HF-weighted SPL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the IQIP + DBBC system applied, in the winter (top) and summer (bottom)58
Figure 4.10.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal, in the winter (top) and summer (bottom) .61
Figure 4.11.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal, in the winter (top) and summer (bottom)

	eport on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 4.12.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.13.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)64
Figure 4.14.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.15.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal harbour seal the HSD + DBBC system applied, in the winter (top) and summer (bottom)66
Figure 4.16.	The map of unweighted SEL _{cum} above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.17.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal harbour seal the IQIP + DBBC system applied, in the winter (top) and summer (bottom)68
Figure 4.18.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders, in the winter (top) and summer (bottom)71
Figure 4.19.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.20.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.21.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.22.	The map of HF-weighted SPL _{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)78
Figure 4.23.	The map of HF-weighted SEL _{cum} from cumulated piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)79
Figure 4.24.	The map of VHF-weighted SPL _{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)80
Figure 4.25.	The map of HF-weighted SEL cum from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.26.	The map of VHF-weighted SPL _{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

The map of HF-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)
The map of VHF-weighted SPL _{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
The map of HF-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
The map of VHF-weighted SPL _{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
The map of VHF-weighted SPL _{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)88
The map of HF-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
The map of VHF-weighted SPL _{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)90
The map of HF-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
The map of VHF-weighted SPL _{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)92
The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)93
The map of VHF-weighted SPL _{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)94
The map of HF-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)95
The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

Appendix 3	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 4.41.	The map of PW-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.42.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact for the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.43.	The map of PW-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.44.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.45.	The map of PW-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)104
Figure 4.46.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.47.	The map of PW-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)106
Figure 4.48.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)107
Figure 4.49.	The map of PW-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with the HSD+ DBBC system applied, in the winter (top) and summer (bottom)108
Figure 4.50.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.51.	The map of PW-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.52.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.53.	The map of PW-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)112

Appendix 3	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 4.54.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)113
Figure 4.55.	The map of PW-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with the IQIP+ DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.56.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.57.	The map of PW-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.58.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)120
Figure 4.59.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)
Figure 4.60.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fishes with swim bladders with a BBC applied, in the winter (top) and summer (bottom) seasons
Figure 4.61.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.62.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)124
Figure 4.63.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom) seasons
Figure 4.64.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)
Figure 4.65.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)127
Figure 4.66.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of

	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
	impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom) seasons
Figure 4.67.	The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.68.	The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.69.	The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.70.	The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.71.	The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.72.	The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.73.	Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)140
Figure 4.74.	Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)141
Figure 4.75.	Noise propagation during simultaneous piling in two locations 20 km apart from each other in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)142
Figure 4.76.	Noise propagation during simultaneous piling in two locations 20 km apart from each other in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)143
Figure 4.77.	Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.78.	Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)
Figure 4.79.	Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)146
Figure 4.80.	Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)147

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

- Figure 4.85. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)......152
- Figure 4.86. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)......153

	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 5.7.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal
Figure 5.8.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied164
Figure 5.9.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied
Figure 5.10.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fishes with swim bladders
Figure 5.11.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied
Figure 5.12.	The map of VHF-weighted SPL _{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.13.	The map of HF-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.14.	The map of VHF-weighted SPL_{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.15.	The map of HF-weighted SEL cum from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.16.	The map of VHF-weighted SPL _{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.17.	The map of HF-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied
Figure 5.18.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied174
Figure 5.19.	The map of PW-weighted SEL _{cum} from piling sources located close to each other within the Baltica- 1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied
Figure 5.20.	The map of unweighted SEL above the acoustic background from piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied
Figure 5.21.	The propagation map of PW-weighted SEL _{cum} noise above the ambient noise from piling sources located 20 km apart and the impact ranges for the grey seal and harbour seal with the HSD + DBBC system applied
Figure 5.22.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 5.23.	The map of PW-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied
Figure 5.24.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders, with the HSD + DBBC system applied
Figure 5.25.	The map of unweighted SEL above the acoustic background from piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied
Figure 5.26.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied
Figure 5.27.	The propagation w piling noise within the Baltic-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.28.	The propagation w piling noise within the Baltic-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.29.	The propagation of piling noise from simultaneous piling in two close locations within the Baltica- 1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.30.	The propagation of piling noise from simultaneous piling in two close locations within the Baltica- 1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.31.	Noise propagation during simultaneous piling in two locations 20 km apart in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.32.	Noise propagation during simultaneous piling in two locations 20 km apart in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 5.33.	Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna187
Figure 5.34.	Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna187
Figure 6.1.	The map of unweighted SEL above the acoustic background for a single blow in the area of the Baltica-1 OWF, in the summer season. Grey lines: isobaths
Figure 6.2.	The map of VHF-weighted SPL125ms in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise
Figure 6.3.	The map of HF-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise
Figure 6.4.	The map of VHF-weighted SPL _{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied

	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 6.5.	The map of HF-weighted SEL cum in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied192
Figure 6.6.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal
Figure 6.7.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal
Figure 6.8.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied
Figure 6.9.	The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied195
Figure 6.10.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fishes with swim bladders
Figure 6.11.	The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied
Figure 6.12.	The map of VHF-weighted SPL _{125ms} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied
Figure 6.13.	The map of HF-weighted SEL _{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied
Figure 6.14.	The map of VHF-weighted SPL _{125ms} from piling sources located 20 km apart and the ranges of impact on the harbour porpoise with a BBC applied
Figure 6.15.	The map of HF-weighted SEL _{cum} from piling sources located 20 km apart and the ranges of impact on the harbour porpoise with a BBC applied200
Figure 6.16.	The map of VHF-weighted SPL _{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied201
Figure 6.17.	The map of HF-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied201
Figure 6.18.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied204
Figure 6.19.	The map of PW-weighted SEL _{cum} for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied
Figure 6.20.	The map of unweighted SEL above the acoustic background for piling sources located at a distance of 20 km from each other and the ranges of impact for the grey seal and harbour seal with a BBC applied
Figure 6.21.	The map of PW-weighted SEL _{cum} for piling sources located 20 km apart and the impact ranges for the grey seal and harbour seal with a BBC applied205

Appendix 3	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Figure 6.22.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied
Figure 6.23.	The map of PW-weighted SEL _{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied
Figure 6.24.	The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 area and the ranges of impact on fish with swim bladders with a BBC applied
Figure 6.25.	The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with a BBC applied
Figure 6.26.	The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with a BBC applied210
Figure 6.27.	The propagation w piling noise within the Baltic-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 6.28.	The propagation w piling noise within the Baltic-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 6.29.	The propagation of piling noise from simultaneous piling in two close locations within the Baltica- 1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna215
Figure 6.30.	The propagation of piling noise from simultaneous piling in two close locations within the Baltica- 1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna215
Figure 6.31.	Noise propagation during simultaneous piling in two locations 20 km apart in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 6.32.	Noise propagation during simultaneous piling in two locations 20 km apart in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna
Figure 6.33.	Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna217
Figure 6.34.	Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna217

LIST OF TABLES

Table 3.1.	Functional hearing groups with audible frequency ranges estimated (NMFS, 2018)
Table 3.2.	The levels of underwater sound generated during piling in the Baltica-1 OWF area for individual locations
Table 3.3.	The coordinates of the noise modelling locations within the Baltica-1 OWF area35
Table 3.4.	The summary of the geological profile used for modelling underwater noise within the Baltica-1 OWF
Table 3.5.	A summary of source levels with and without BBC, HSD+DBBC and IQIP+DBBC41
Table 3.6.	An overview of noise exposure criteria used to calculate the impact ranges for marine mammals at the stage of construction44
Table 3.7.	An overview of noise exposure criteria used to calculate the impact ranges for fish with swim bladders at the stage of construction45
Table 4.1.	The impact ranges and areas for the harbour porpoise calculated for the Baltica-1 OWF49
Table 4.2.	The impact ranges and areas calculated for the grey seal and harbour seal in the Baltica-1 area
Table 4.3.	The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area
Table 4.4.	The impact areas for the harbour porpoise in case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: highest values for 2 and 3 sources, respectively; piling with the BBC, HSD + DBBC and IQIP + DBBC mitigation systems applied)76
Table 4.5.	The ranges of distance to the threshold values for the grey and harbour seal in the case of simultaneous piling at several locations within and beyond the Baltica-1 OWF area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the use of the BBC, HSD + DBBC, and IQIP + DBBC mitigation systems)
Table 4.6.	The ranges of distances to threshold values for fish with swim bladders in the case of simultaneous piling in several locations within and outside the Baltica-1 area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the use of the BBC, HSD + DBBC, and IQIP + DBBC mitigation systems)
Table 4.7.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures applied
Table 4.8.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise with mitigation measures applied
Table 4.9.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied
Table 4.10.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied

Appendix 3	Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm - The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area
Table 4.11.	The ranges and areas of impact causing the behavioural response in the harbour porpoise calculated for the Baltica-1 OWF and the percentage of coverage of the Natura 2000 site Hoburgs bank och Midsjöbankarna
Table 5.1.	The impact ranges and areas for the harbour porpoise calculated for the Baltica-1 OWF160
Table 5.2.	The impact ranges and areas calculated for the grey seal and harbour seal in the Baltica-1 area
Table 5.3.	The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area
Table 5.4.	The areas of impact on the harbour porpoise in case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)
Table 5.5.	The areas of impact on the grey seal and common seal in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)
Table 5.6.	The areas of impact on fish with swim bladders in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)
Table 5.7.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures applied
Table 5.8.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise with mitigation measures applied
Table 5.9.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied
Table 5.10.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied
Table 5.11.	The ranges and areas of impact causing a behavioural response in the harbour porpoise, calculated for the central location in the Baltica-1 OWF area and the percentage of coverage of the Natura 2000 site Hoburgs bank och Midsjöbankarna
Table 6.1.	The distances to threshold values for the harbour porpoise in the Baltica-1 OWF area190
Table 6.2.	The distances to the threshold values for the grey seal and harbour seal calculated for the Baltica- 1 OWF area192
Table 6.3.	The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area
Table 6.4.	The areas of impact on the harbour porpoise in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with a mitigation system applied)
Table 6.5.	The areas of impact on the grey seal and harbour seal in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with a mitigation system applied)

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

Table 6.6.	The areas of impact on fish with swim bladders in the case of simultaneous piling at several locations within and outside the Baltica-1 area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with a BBC mitigation system applied)
Table 6.7.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures applied
Table 6.8.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise with mitigation measures applied
Table 6.9.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied
Table 6.10.	The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied214
Table 6.11.	The ranges and areas of impact causing a behavioural response in the harbour porpoise, calculated for the southern location in the Baltica-1 OWF area and the percentage of coverage of the Natura 2000 site Hoburgs bank och Midsjöbankarna218

ABBREVIATIONS AND DEFINITIONS

μPa	micropascal
BBC	Big Bubble Curtain
dB	decibel – a logarithmic measure of sound intensity/pressure. The decibel value for sound pressure is 10 log10 (P^2/P_o^2) where P = the actual pressure and P_o = the reference pressure
DBBC	Double Big Bubble Curtain
EIA	Environmental Impact Assessment
HF	the high-frequency cetacean hearing group (here: the harbour porpoise) (hearing group classification based on the NMFS, 2018)
HF-weighted SEL	sound exposure level with high-frequency weighting function according to susceptibility to noise-induced hearing loss in cetaceans (based on NMFS 2018)
HSD	Hydro Sound Damper
Hz	hertz – the unit of frequency, where 1 Hz is 1 cycle per second and 1 kHz is 1000 cycles per second
IQIP-NMS	Noise Mitigation Screen manufactured by IQIP, previously known as an IHC-NMS
NMFS	The US National Marine Fisheries Service
NOAA	The US National Oceanic and Atmospheric Administration
OWF	Offshore Wind Farm
PTS	Permanent Threshold Shift – a permanent increase in hearing threshold due to a physical injury of hair cells because of exposure to sound
PTS (cumulative)	the permanent shift in hearing threshold due to a cumulative dose of noise exposure
PTS (single blow)	the permanent shift of the hearing threshold as a result of a single pile driver blow
PW	the hearing group of high-frequency cetaceans in the water (here: the grey seal and harbour seal) (hearing group classification based on the NMFS, 2018)
PW-weighted SEL	sound exposure level with frequency weighting function according to the susceptibility to noise-induced hearing loss in seals (based on NMFS 2018, 2020)

RAM	Range-dependent Acoustic Model – a model based on the parabolic equation method, assuming that emitted energy dominates over back-scattered energy
SEL	Sound Exposure Level; it is often used when assessing the impact of noise on the marine environment as a measure of the total noise energy normalised to 1 second
SEL _{cum}	the cumulative level of sound exposure, i.e. a summation of the sound exposure levels of multiple consecutive events. It is calculated as:
	$SEL_{cum} = SEL + 10 \log_{10} n$
	n = the number of pile driver blows
SPL	Sound Pressure Level [dB re 1μ Pa] – the sound pressure expressed in decibels [dB] relative to the reference pressure P _{ref} = 1μ Pa
SPL _{peak}	Peak Sound Pressure Level – the maximum value of a signal amplitude
SPL _{rms}	the root mean square (rms) of the sound pressure amplitude
SRC	source
TL	Transmission Loss (propagation loss) – reduction in sound intensity with the increase in distance
TTS	Temporary Threshold Shift – a temporary increase in hearing threshold after exposure to sound; the hearing threshold will return to pre-exposure state after some time
TTS (cumulative)	a temporary shift in hearing threshold due to a cumulative dose of noise exposure
TTS (single blow)	a temporary shift in the hearing threshold as a result of a single pile driver blow
VHF	the very high-frequency cetacean hearing group (here: the harbour porpoise) (hearing group classification based on Southall et al., 2019)
VHF-weighted SEL	Sound Exposure Level with Very High-Frequency weighting function according to susceptibility to noise-induced hearing loss in cetaceans (based on Southall et al., 2019)
WOA	World Ocean Atlas
WOD	World Ocean Database

1 NON-SPECIALIST SUMMARY

Underwater sound is generated during all stages associated with the construction, operation, and decommissioning of an offshore wind farm (OWF). The highest environmental risks are related to underwater noise emitted during construction, due to the relatively high sound levels generated when piles are driven into the seabed. Marine organisms, including fish and mammals, are sensitive to sound, hence the noise associated with the construction of an OWF may affect them even from a considerable distance.

For the purposes of this Report, the acoustic emission associated with piling in the area of the Baltica-1 OWF, which is located in the Polish exclusive economic zone, was examined. The analysis was conducted for three WTG locations in the northern, central, and southern parts of the OWF. Depending on the location, the analyses were carried out for the winter season, which was considered the worst-case scenario in terms of the greatest range of acoustic wave propagation, and the summer season, which, despite the smallest range of underwater noise impact, was considered the farthest-reaching scenario from the point of view of the environmental, i.e. the impact on marine mammals associated with the greatest activity of porpoises.

Based on the acoustic modelling performed, the zones of noise impact (in the form of distance from the sound source expressed in kilometres) on marine mammals (porpoises and seals) and fish with swim bladders were estimated. The noise effects considered included behavioural responses (behavioural changes), and hearing loss in the form of temporary and permanent shifts in the hearing thresholds (TTS, PTS, and reversible hearing loss in the case of fish with swim bladders). As a result, this Report constitutes the technical basis for the Environmental Impact Assessment of the Investment regarding marine mammals and fish.

For modelling purposes, 72 transects with a maximum length of 150 km, extending in all directions from the sound source, were selected. Bathymetric data were obtained from the EMODnet platform. The geological profile of the seabed was determined based on the results of the preliminary environmental surveys conducted within the Baltica-1 OWF area, and the profiles of sound propagation velocity in the soil were determined using publicly available databases.

In the first stage, the worst-case scenario was determined by estimating the acoustic energy emitted depending on the wind turbine generator foundations used (e.g. large-diameter monopile, tripod, and gravity-based structure). The calculation of total acoustic energy emitted at the construction stage involving the driving of a single pile indicated that the worst-case scenario is the option with monopile installation. The calculations were performed for a monopile with a diameter of 12 m and a hammer with an impact energy of 8000 kJ (based on data provided by the Client). The calculated sound source level (the sound level at a distance of 1 m from the source) was expressed as the sound exposure level (SEL), i.e. the emitted acoustic energy (in dB re 1 μ Pa²s) and the peak sound pressure levels (SPL_{peak} [dB re 1 μ Pa]). Their values were determined for individual hammer blows, as well as for the estimated maximum number of blows required to drive one foundation into the seabed. The following values were used in the modelling:

- SEL for a single blow = 228.9 dB re 1 μ Pa²s (in the northern location); 228.4 dB re 1 μ Pa²s (in the central location); 230.1 dB re 1 μ Pa²s (in the southern location);
- SPL_{peak} for a single blow = 248.9 dB re 1 μ Pa (in the northern location); 248.4 dB re 1 μ Pa (in the central location); 250.1 dB re 1 μ Pa (in the southern location);

• SEL for a single strike = 267.1 dB re 1 μ Pa²s (in the northern location); 266.5 dB re 1 μ Pa²s (in the central location); 268.2 dB re 1 μ Pa²s (in the southern location).

The cumulative SEL was calculated based on a 24-hour time interval, taking into account the total number of hammer strikes needed to install a monopile.

The emitted sound levels were also estimated when using noise mitigation measures. For this purpose, depending on the location, a single big bubble curtain (BBC), a system consisting of a hydro sound damper (HSD) and a double big bubble curtain (HSD + DBBC), as well as a system consisting of an IQIP noise mitigation screen in combination with a double big bubble curtain (IQIP + DBBC) were taken into account.

Sound propagation modelling was performed for the frequency range of 20 Hz–4 kHz. Higher frequencies were estimated based on the results for the level of 4 kHz and corrected for frequency-dependent propagation losses. Numerical modelling was performed using the MIKE Underwater Acoustic Simulator (UAS) software by DHI.

The peer-reviewed US guidelines for the TTS (temporary threshold shift) and PTS (permanent threshold shift) criteria were used to estimate the impact zones in relation to marine mammals. Behavioural criteria were developed based on a detailed literature review. In addition, an animal motion model and the "ramp-up" procedure were used in the construction noise analysis. The so-called "effective quiet," which is the threshold below which the accumulation of acoustic energy in an animal does not occur, was applied in the construction noise analysis. For fish with swim bladders, the noise criteria were taken from the available expert guidelines and literature review. For fish without swim bladders, no quantitative assessment was feasible. The results of recent studies on the effects of noise on fish without swim bladders have proven that for this group of fish, the relevant auditory stimulus is particle motion rather than pressure. Currently, there are no reliable criteria that provide a basis for performing an impact assessment was carried out for this group of fish based on a review of the literature available.

1.1 The Northern Location

In general, the noise modelling results conducted for the northern location during the construction stage in the winter season showed higher impact range values than those obtained for the summer season.

According to the analyses conducted for the winter season with no mitigation applied, the impact ranges were generally higher for the harbour porpoise than for the grey seal and the harbour seal. For the harbour porpoise, the largest impact ranges were found for the behavioural response, while for seals, the biggest ranges were calculated for the cumulative TTS. For harbour porpoises, the behavioural response range exceeded the model domain of 150.0 km from the sound source. Considering the cumulative TTS, the maximum impact range was 104 km for the porpoise and 112 km for the seal species. In the case of cumulative PTS, the range was 26.3 km for the porpoise and 2.9 km for the seals.

In the case of fish with swim bladders, the greatest impact ranges were also identified for behavioural response with the cumulative TTS, and they reached the minimum level of 150 km. Taking into account the cumulative reversible hearing loss, the maximum range was 19.2 km.

Calculations made for the scenario with mitigation measures applied indicated a decrease in the ranges of all analysed impacts.

After the application of a bubble curtain, the range of behavioural response in the case of the harbour porpoise remained high, with the cumulative impact ranges of TTS and PTS significantly reduced. For fish with swim bladders, calculations for the application of a BBC showed that the maximum range of behavioural response still exceeded the range of the model domain, as without the use of mitigation measures and for cumulative TTS, the range was still high.

Calculations for the application of the mitigation measures in the form of HSD + DBBC were also performed, because the use of a BBC alone was not sufficient to reduce the impact ranges to an acceptable level, especially in the case of behavioural response. The results of the model analyses after the application of HSD + DBBC showed a decrease in all impact ranges. The maximum range of behavioural response of the harbour porpoise decreased to 20.8 km and in the case of seals, to 3.4 km.

For fish with swim bladders, calculations for the use of HSD + DBBC showed that the maximum distance for behavioural response decreased to 41.3 km. For cumulative TTS, the range decreased to a maximum of 11.6 km.

As the behavioural response range of the harbour porpoise was still relatively high, also in the nearby Natura 2000 site, analyses were conducted for the application of IQIP + DBBC. With the mitigation measures applied, the results showed a decrease in the range of impact of behavioural changes to a maximum distance of 20.8 km for the harbour porpoise and only 1.9 km for seals.

For fish with swim bladders, the introduction of IQIP + DBBC contributed to further decreases in the ranges and zones of impact for both behavioural response and TTS and PTS.

Analyses conducted for the summer season, without mitigation, indicate that, similarly to the winter season, the largest impact distances were found for the behavioural response in the case of the harbour porpoise and the cumulative TTS in the case of seals. However, the maximum impact ranges of individual effects were lower than those obtained for the winter season.

In the case of fish with swim bladders, the largest impact ranges were obtained for the behavioural response and amounted to 118 km. Taking into account the cumulative TTS, the maximum range was 39.1 km. Concerning the cumulative reversible hearing loss, the values obtained for the summer season were lower than the ones calculated for the winter season and amounted to 11.2 km.

Calculations made for the scenario with mitigation measures in the form of BBC applied indicated a decrease in the impact ranges. After the application of a bubble curtain, the maximum range of the behavioural response in the case of the harbour porpoise decreased to 10.7 km. The range of cumulative impacts decreased to levels below 1 km for both mammals.

In the case of fish with swim bladders, the calculations involving the application of a BBC proved that the maximum impact range for behavioural response was limited to 42.3 km. For cumulative TTS, the ranges decreased to a maximum of 19.1 km, and for cumulative reversible hearing loss, they were only 4.0 km.

Calculations made for the HSD + DBBC and IQIP + DBBC mitigation measures applied showed a further reduction in all impact ranges. Thus, the lowest values of the behavioural response decreased to 8.6 km for the harbour porpoise after the introduction of HSD + DBBC and 1.6 km for seals with the

IQIP + DBBC system applied. However, the impacts of cumulative TTS and PTS were similar for both mitigation systems.

For fish with swim bladders, the lowest impact values were obtained after the IQIP + DBBC system was introduced.

Calculations of noise propagation resulting from piling at several locations showed that the ranges and areas of impact of all analysed noise exposure effects (behavioural response, TTS, and PTS) increased with the growing number of piling sources. Such a trend was identified for all animals. The largest ranges and zones of impact were found for the scenario with four sources. The largest impact zones were found for the behavioural response.

Due to the proximity of the Natura 2000 site, Hoburgs bank och Midsjöbankarna, noise levels at the boundary of the area were determined for the harbour porpoise, which is protected in this area. These values were next compared with the thresholds for the cumulative TTS and PTS. For the harbour porpoise, the cumulative TTS threshold level was exceeded at the boundary of the Swedish Natura 2000 site when no mitigation measures were applied and after the application of a BBC. Further analyses showed that even the use of the HSD/IQIP and DBBC systems would not reduce all impacts to the boundary of the Natura 2000 site in the winter season. In the case of cumulative impacts, exceedances of the permissible limits are expected in both seasons analysed after the application of the BBC mitigation system. According to calculations, the HSD + DBBC and IQIP + DBBC systems are only able to reduce noise in the case of piling in two sources located 20 km apart and conducted in the summer season. Importantly, the use of IQIP + DBBC system reduces the ranges of the weighted cumulative TTS and PTS less effectively than HSD + DBBC, which results from worse reducing properties at a frequency of approximately 800 Hz.

Additionally, the analyses of the potential impact of the behavioural response in the area of the nearby Natura 2000 site Hoburgs bank och Midsjöbankarna were carried out. The analyses showed that the area of behavioural response will vary depending on the mitigation measures applied and the season. The largest range can be expected in the winter season, during which the use of the analysed mitigation measures can reduce the percentage of the area affected by the impact to a maximum of 2.5%. In the summer season, the percentage of the area affected by the potential impact will be below 1% if the mitigation measures included in the modelling or other commercially available solutions reducing underwater noise are used, the effects of which are at least as good as the analysed mitigation measures.

1.2 THE CENTRAL LOCATION

The modelling of noise generated as a result of piling at the central location was conducted for the summer season.

The results of analyses for a scenario with no mitigation systems, the impact ranges were generally higher for the harbour porpoise than for the grey seal and the harbour seal. For the harbour porpoise, the largest impact ranges were found for the behavioural response, while for seals, the biggest ranges were calculated for the cumulative TTS. In the case of porpoises, the maximum range of this impact was 74.3 km from the sound source. Considering the cumulative TTS, the maximum impact range was 9.8 km for the porpoise and 26.2 km for the seal species. In the case of cumulative PTS, the range was 4.2 km for the porpoise and 0.4 km for seals.

In the case of fish with swim bladders, the greatest impact range was also identified for behavioural response, and it was up to 133 km. Taking into account the cumulative TTS and cumulative reversible hearing loss, the maximum ranges were 47.4 km and 10.6 km, respectively.

Calculations made for the scenario with the HSD + DBBC applied indicated a decrease in the ranges of all analysed impacts. After the application of mitigation measures, the maximum range of the behavioural response decreases to the level of 8.9 km at maximum. The impact range for cumulative TTS lowered to a maximum of 0.2 km for the porpoise and 0.1 km for the two seal species. The impact range for cumulative PTS was 0.1 km for both groups of mammals.

In the case of fish with swim bladders, the calculations for the application of the HSD + DBBC system proved that the maximum impact range for behavioural response was 23.5 km. For cumulative TTS, the ranges decreased to a maximum of 8.0 km, and for cumulative reversible hearing loss, they were only 1.1 km.

For the Natura 2000 site Hoburgs bank och Midsjöbankarna, noise levels that can be expected at the site boundary were determined and compared with thresholds for cumulative TTS and PTS for the harbour porpoise. The cumulative TTS level was exceeded at the boundary of the Swedish Natura 2000 site when no mitigation measures were applied. Further analyses showed that the use of HSD and DBBC will effectively reduce all impacts at the Natura 2000 site boundary during the summer season. For cumulative impacts, the use of HSD + DBBC can reduce noise to acceptable levels in all scenarios analysed.

Additionally, the analyses of the potential impact of the behavioural response in the area of the nearby Natura 2000 site Hoburgs bank och Midsjöbankarna were carried out. The analyses showed that with mitigation in the form of HSD + DBBC applied, the range of the behavioural response will not cross the boundary of the Natura 2000 site.

1.3 The southern location

The modelling of noise in the southern location during the construction stage was conducted for the summer season.

The results of analyses for a scenario without mitigation indicate that in the case of the harbour porpoise, the largest impact distances were found for the behavioural response, while for seals they were calculated for the cumulative TTS. In the case of porpoises, the maximum range of this impact was 85.8 km from the sound source. Considering the cumulative TTS, the maximum impact range was 20.3 km for the porpoise and 35.3 km for the seal species. In the case of cumulative PTS, the range was 5.5 km for the porpoise and 0.8 km for seals.

In the case of fish with swim bladders, the greatest impact range was also identified for behavioural response, and it exceeded the model domain range. Taking into account the cumulative TTS and cumulative reversible hearing loss, the maximum ranges were 55.8 km and 14.2 km, respectively.

Calculations made for the scenario with a BBC applied indicated a decrease in the ranges of all the analysed impacts. After the application of mitigation measures, the maximum range of the behavioural response decreases to the level of 12.3 km at maximum. The impact range for cumulative TTS lowered to a maximum of 0.6 km for the porpoise and 1.5 km for the two seal species. The impact range for cumulative PTS was 0.1 km for both groups of mammals.

In the case of fish with swim bladders, the calculations for the application of the BBC system proved that the maximum impact range for behavioural response was 65.9 km. For cumulative TTS, the ranges decreased to a maximum of 33.0 km, and for cumulative reversible hearing loss, they were only 5.2 km.

For the Natura 2000 site Hoburgs bank och Midsjöbankarna, noise levels that can be expected at the site boundary were determined and compared with thresholds for cumulative TTS and PTS for the harbour porpoise. Analyses have shown that without the use of mitigation measures, the assumed limits of cumulative TTS and PTS will not be exceeded, with the TTS limit at only 2 dB below the acceptable limit. The use of the mitigation measure in the form of a BBC will contribute to a significant reduction in noise levels at the boundary of the area discussed.

Additionally, the analyses of the potential impact of the behavioural response in the area of the nearby Natura 2000 site Hoburgs bank och Midsjöbankarna were conducted. The use of the mitigation measure in the form of a BBC will contribute to a significant reduction in noise levels at the boundary of the discussed area.

2 INTRODUCTION

This Report constitutes an appendix to the Report on the Environmental Impact Assessment of the Baltica-1 OWF, which concerns marine mammals and fish in the Polish part of the Baltic Sea. The Report contains the results of analyses relevant to the EIA in terms of:

- the numerical modelling of sound emitted by piling for a single noise source, together with estimations of noise impact zones for marine mammals and fish with swim bladders;
- the levels of modelled noise at the boundary of the Hoburgs bank och Midsjöbankarna Natura 2000 site;
- the analyses of the percentage share of the Natura 2000 site Hoburgs bank och Midsjöbankarna where an impact in the form of behavioural response will occur in the case of harbour porpoises.

A numerical model of noise propagation was prepared to enable the above-mentioned analyses. The model is based on batch input data in the form of, among others, bathymetry, physicochemical conditions, and the geological profile. The modelling coverage was 150 km.

The following sound levels are presented in this report:

- sound exposure level (SEL) in relation to 1 μPa²s;
- the peak sound pressure level (SPL_{peak}) in relation to 1 μPa;
- cumulative sound exposure levels (SEL_{cum}).

The results are presented for three locations with and without noise mitigation measures applied for the winter and summer seasons, depending on the location.

The modelling covers all biologically relevant parts of the frequency spectrum. Impact ranges were calculated for different noise exposure criteria covering harbour porpoises, grey and common seals, and fish with swim bladders. The modelling results are presented in the form of noise maps, tabulated distance compilations, and impact areas.

3 METHODOLOGY

3.1 GENERAL APPROACH

The adopted approach to assessing the impact range and area has three stages:

- sound source definition (sound intensity and frequency spectrum);
- numerical noise modelling;
- the calculation of biological effects using internationally accepted criteria.

The **definition of the sound source** was based on data on finite elements and publicly available measurement data.

The **numerical modelling of sound propagation** was performed using the proprietary MIKE software by DHI – the Underwater Acoustic Simulator (UAS: MIKE DHI, 2023).

The model focuses on noise propagation in the far field. The UAS software applies the RAM code based on the sound propagation model developed by Collins (Collins, 1993). A detailed description of the underwater acoustic model, including the scientific basis of the model and its assumptions, can be found in the technical documentation for the UAS in the MIKE software (MIKE DHI, 2023).

The sound source properties were combined with a propagation model to calculate sound propagation in angular directions from the piling locations along 72 2D transects. Specific 1/3-octave bands with central frequencies varying from 20 Hz to 4 kHz were modelled, which cover the frequencies most relevant to piling. These bands cover most of the energy from piling. For higher frequencies, propagation losses at 4kHz were applied in combination with a correction for attenuation increasing with increasing frequency (Francois and Garrison, 1982a; 1982b). Based on the numerical model, maps were produced showing the sound exposure levels as a function of distance from the sound source.

As the marine mammals considered in this study use space throughout the water column, the maximum sound levels calculated in the water column for each distance range are presented.

To **calculate biological effects**, the scheme presented by Thomsen et al. (2021) was used. There are, respectively, several overlapping noise impact zones, the sizes of which depend mainly on the relative distance of the animals from the sound source location [Figure 3.1]. This study focuses on **behavioural response** and **hearing loss** (TTS and PTS, as well as reversible hearing loss in fish with swim bladders), as these are the effects that should be considered in light of the existing regulations.

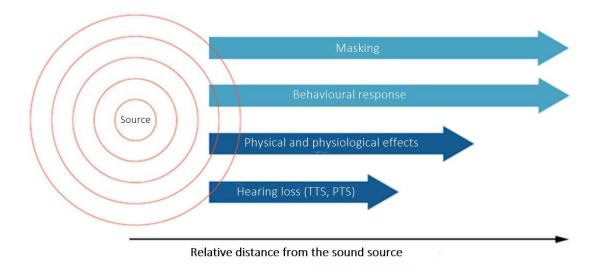


Figure 3.1. The potential effects of noise at different distances from the sound source (based on Thomsen et al., 2021) (TTS = Temporary Threshold Shift and PTS = Permanent Threshold Shift)

3.2 THE RELEVANT MODEL PARAMETERS

3.2.1 Sound levels

A standard result of sound propagation modelling is the transmission loss (TL) for frequencies in the 1/3-octave bands:

$$TL_{f} = -20 \log_{10} \frac{p_{received}}{p_{source}}$$

TL illustrates the cumulative decrease in acoustic intensity due to the propagation of an acoustic pressure wave when moving away from the sound source, i.e. the TL occurring between the source and the sound recipient:

$$SEL^{R} = SEL^{SRC} - TL$$

where: R is the recipient, and SRC is the sound source.

As transmission losses are frequency-dependent, the sound level is calculated for 1/3-octave bands. In addition, the sound exposure level was also determined:

$$\mathsf{SEL}_{\mathsf{oa}}^{\mathsf{R}} = 10 \log_{10} \left(\sum_{f} 10^{0.1 \, \mathsf{SEL}_{f}^{\mathsf{SRC}} - 0.1 \, \mathsf{TL}_{f}} \right)$$

where: SEL_f^{SRC} refers to the SEL for each 1/3-octave band with centre frequency f.

3.2.2 Frequency weighting

Marine mammals are divided in terms of functional hearing groups based on how they perceive sound. The different hearing characteristics associated with the range of sounds that a given group of animals perceives have been collated by the National Marine Fisheries Service (NMFS, 2018; Southall et al., 2007) using frequency weighting expressed as:

$$W(f) = C + 10 \log_{10} \left(\frac{(f/f_1)^{2a}}{\left[1 + (f/f_1)^2 \right]^a \left[1 + (f/f_2)^2 \right]^b} \right)$$

with the a, b, and C parameters and the f1 and f2 frequencies presented in the table below [Table 3.1]. The weighting curves are shown in the following figure [Figure 3.2]. The hearing range has been provided in the next table [Table 3.1].

The weighted sound exposure level is calculated by weighting each frequency band:

weighted SEL =
$$10 \log_{10} (\sum_{f} 10^{0.1 \text{ SEL}_{f} - 0.1 W(f)})$$

 Table 3.1.
 Functional hearing groups with audible frequency ranges estimated (NMFS, 2018)

Functional hearing groups	Estimated hearing range	а	b	f1 [kHz]	f² [kHz]	C [dB]
Cetaceans using high-frequency sounds (HF)	275 Hz–160 kHz	1.8	2	12	140	1.36
Pinnipeds in the water (PW)	50 Hz–86 kHz	1.0	2	1.9	30	0.75

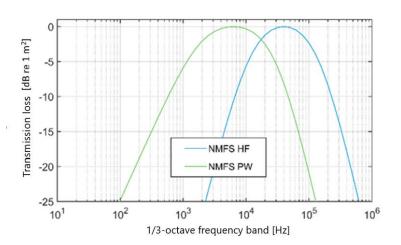


Figure 3.2.A compilation of weighted functions for the groups of cetaceans using high-frequency (HF)
sounds compared to M-weighted functions for pinnipeds in the water (PW)

3.2.3 Cumulative sound exposure level

The noise exposure criteria require consideration of the force from the construction to estimate biological impacts in terms of the noise dose. The cumulative sound exposure level is the best analytical form to describe the "acoustic energy dose" generated by an activity (piling, in this case), as it covers all the acoustic energy emitted. As a rule, acoustic events (e.g. construction noise) added together form a so-called "dose." The term "cumulative sound exposure level" is used in underwater acoustics (Gill et al., 2012). It should not be confused with "cumulative impacts," a term often used to describe impacts generated by activities conducted at separate locations (e.g. from different projects) analysed together. If all hammer strikes are equal, the cumulative sound exposure level (SEL) is determined according to the following formula:

$$SEL_{cum} = SEL + 10 \, \log_{10} n$$

where SEL is the sound saturation level of a single strike and n is the number of strikes.

Sound exposure levels in the moving receiver method are accumulated along evacuation routes, i.e. along transects for each z-angle:

$$\mathsf{SEL}_c^{\mathsf{moving}} = 10 \log \sum_{i=1}^N 10^{\frac{(\mathsf{SEL}-\mathsf{TL}(r_0+vt_i))}{10}}$$

where the calculations include N – the SEL from a single blow of a pile driver after applying the NMFS frequency weighting (see Chapter 3.2.2). Transmission losses (TL) can be calculated based on numerical simulations with the distance of $r = r_0 + vt_i$ with the above-mentioned initial distance r_0 and escape velocity v; t_i is the time from the beginning of the pile driving operation.

3.3 THE APPROACH TO CONSTRUCTION NOISE ASSESSMENT

3.3.1 Definition of the sound source

3.3.1.1 Information on the sound source

Since distinct types of foundations (monopile, jacket foundation, gravity-based structure) are being considered for the construction of the Baltica-1 OWF, their comparison was carried out to determine the worst-case scenario for the environment in terms of the level of sound generated. The results of the comparison showed that the greatest potential impact on marine organisms is associated with noise generated at the stage of driving piles into the seabed, i.e. with the installation of monopile and jacket foundations. The analyses further showed that the broadband SEL generated at the source as a result of driving a monopile with the technical parameters specified in the table below [Table 3.2] will be approximately 7 dB higher than in the case of the considered jacket foundation. Therefore, the impact assessment will be based on the monopile installation.

For the modelling of noise propagation, the worst-case scenario was analysed, taking into account the pile diameter, the type of hammer and the number of blows needed to completely drive the pile into the seabed. The cumulative SEL was calculated based on the number of blows needed to fully install the monopile (i.e. 10000 blows). The impact is based on the assumptions shown in the following table [Table 3.2].

Parameter	The northern location	The central location	The southern location
Pile diameter [m]	12		
The number of blows needed to drive in a pile	10,000		
The maximum power of the pile driver [kJ]	8000		
The maximum SEL [dB re 1 μ Pa ² ·s]	228.9	228.4	230.1
The maximum SPL _{peak} [dB re 1µPa]	248.9	248.4	250.1
The maximum SPL _{rms} [dB re 1µPa]	241.1	240.6	242.3
SEL _{cum} [dB re 1 µPa ² ·s]	267.8	266.5	268.2

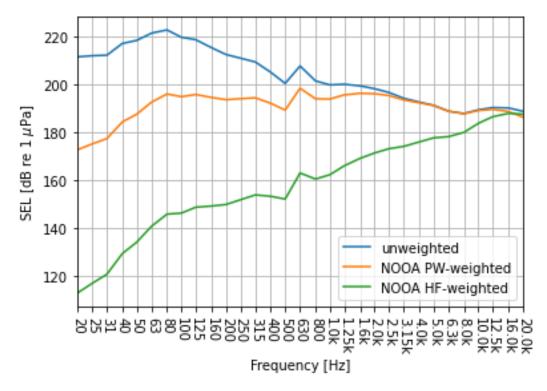
Table 3.2.The levels of underwater sound generated during piling in the Baltica-1 OWF area for individual
locations

3.3.1.2 Ramp-up procedure – marine mammals and fish

The piling process is usually conducted using variable energy. The energy required is highly dependent on the soil conditions and therefore, it is site-specific. In the case of cumulative sound pressure levels during the construction phase, an example sequence of increasing the hammer energy during piling was modelled in compliance with the following schedule: 15, 55, and 100% of the maximum hammer energy, taking into account the following number of hammer blows for individual penetration depths: 1250, 2500, and 6250.

Sound levels are scaled according to the following formula:

$$\Delta SEL = 10 \log_{10} \frac{Ei}{E0}$$


3.3.1.3 Sound spectrum

The sound source spectrum was developed based on data on finite elements and publicly available measurement data. The numerically derived spectrum was calculated using the model described in the study by von Pein et al. (2021).

The scaled sound source spectrum was obtained by applying frequency-dependent scaling laws for pile diameter and water depth to the measurements conducted by Gündert et al. (2015). The measurements were made in the immediate vicinity of the pile. The scaling of the pile diameter effect leads to higher noise emission at low frequencies due to the difference in sound propagation efficiency (von Pein et al., 2022a). In addition, the impacts of the pile driver energy and weight were scaled.

The sound spectrum used below was developed taking into account the maximum values of the numerically calculated and scaled source spectra. This approach reduces the mismatch at higher frequencies between the numerical model and the measurements. At the same time, it takes into account the change in sound propagation characteristics resulting from pile geometry and pile head vibrations, which affect mainly low frequencies. The resulting broadband SEL source level is 228.9 dB, 228.4 dB, and 230.1 dB for the northern, central, and southern locations, respectively.

The resulting spectrum for the northern location is presented in the figure below [Figure 3.3] together with the weighted spectrum for the high-frequency cetaceans and pinnipeds in the water (see also Chapter 3.2.2).

Figure 3.3. The SEL spectra in the 1/3-octave bands of the modelled piling sound in the Baltica-1 OWF in the example of the northern location

3.3.2 Numerical modelling of noise

3.3.2.1 Sound source location

The pile driving modelling was performed for three selected WTG locations, as shown in the figure below [Figure 3.4]. Piling in the northern location was considered the worst-case scenario in terms of the potential impact range of piling within the Baltica-1 OWF on the nearby Natura 2000 site (Hoburgs bank och Midsjöbankarna – SE330308), where the harbour porpoise is protected.

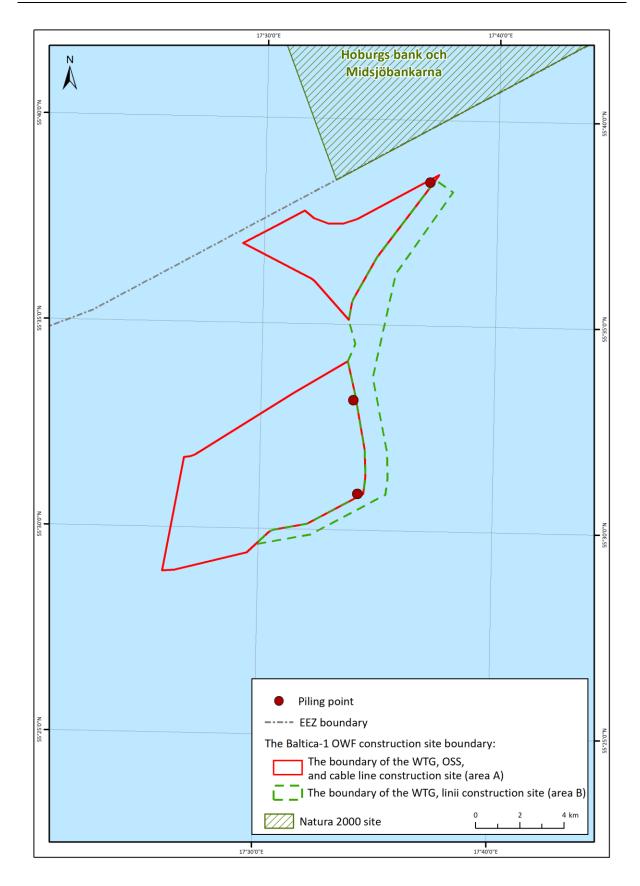
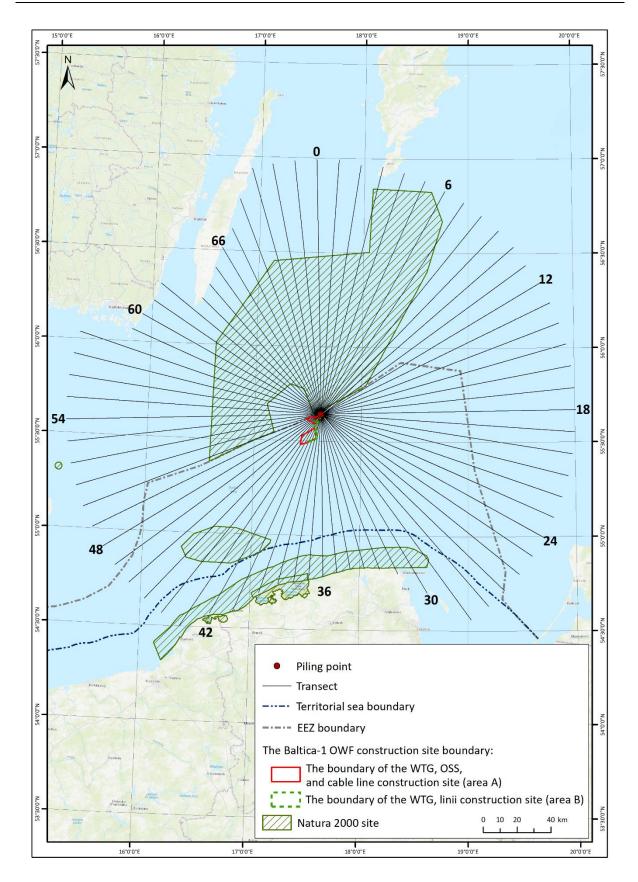


Figure 3.4. The piling locations within the Baltica-1 OWF for which modelling was conducted


The coordinates of the selected locations are presented in the table below [Table 3.3]. The northern point is located approximately 2.1 km from the Natura 2000 site Hoburgs bank och Midsjöbankarna.

Location	Longitude	Latitude	Depth [m]
Baltica-1 – the northern location	17.61799	55.641568	-40
Baltica-1 – the central location	17.56598	55.552778	-37
Baltica-1 – the southern location	17.570213	55.514854	-46

 Table 3.3.
 The coordinates of the noise modelling locations within the Baltica-1 OWF area

Based on the studies conducted for the offshore wind farm analyses and literature data on piling noise propagation (Thomsen et al., 2006), it was determined that the area of modelling should be located within a maximum distance of 150 km from the sound source in all directions. Therefore, 72 transects of 150 km in length or less were delineated, depending on the barrier formed by the shoreline.

A map showing the directions of noise propagation modelling is shown in the example of the northern location in the figure below [Figure 3.5].

Figure 3.5. The noise propagation modelling directions for the Baltica-1 OWF in the example of the northern location

3.3.2.2 Geo-acoustic properties of the soil

A representative seabed profile was developed based on information collected during environmental surveys for the Baltica-1 OWF. Data on the geoacoustic properties of the soil were estimated based on literature data (Jensen et al., 2011) [Table 3.4].

Table 3.4.The summary of the geological profile used for modelling underwater noise within the Baltica-1
OWF

Depth [m b.g.l.]	Thickness [m]	Layer	Cp [m/s]	ρ [g/cm³]	α [dB/λ]
0–0.5	0.5	The fine- and medium-grained sands, silty sands in places (marine, fluvial, and fluvioglacial)	1500	1.7	0.3
0.5–26	25.5	The fine- and medium-grained sands, silty sands in places (marine, fluvial, and fluvioglacial)	1650	1.9	0.6
26–35	9	The fine- and medium-grained sands, silty sands in places (marine, fluvial, and fluvioglacial)	1750	1.8	0.6
35–60	25	Sands with gravel, gravels, and tills (fluvioglacial and glacial)	1900	2	0.4

Cp – compressed wave speed, α – compressional attenuation, ρ – density, λ – wavelength

3.3.2.3 Water column characteristics

Sound propagation in seawater is affected by several factors, including temperature, pressure, salinity and, to a lesser extent, acidity (pH). Therefore, information on these properties is relevant to the assumptions accepted in the model.

Data regarding the pH were obtained from the database of NOAA World Ocean Database (WOD) and the database of the World Ocean Atlas (WOA) was selected as the base for the temperature (Locarnini, 2023) and salinity analyses (Reagan, 2023). Thus extracted temperature and salinity data were converted to sound speed profiles using the UNESCO equation (Fofonoff and Millard, 1983). The vertical profiles of water characteristics and sound profiles used in the winter and spring models are shown in the figure below [Figure 3.6].

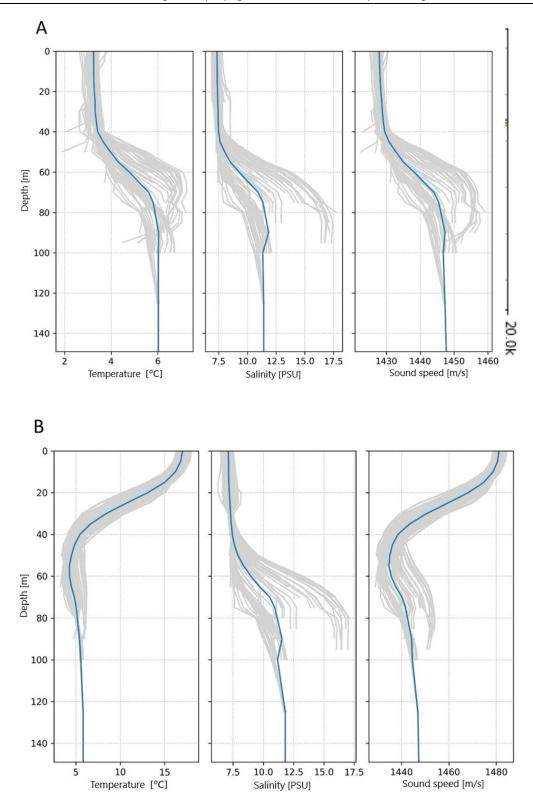


Figure 3.6. The temperature, salinity, and sound velocity profiles in the Baltica-1 OWF area for the winter season (panel A) and the summer season (panel B) (grey lines – individual profiles; blue line – averaged profile [NOAA World Ocean Atlas, 2023])

The modelling of underwater noise propagation was conducted, depending on the location, for two seasons: winter and summer, which are the worst-case scenarios in terms of, respectively, sound propagation range and environmental impact, i.e. potential impact on marine mammals and fish.

3.3.2.4 Frequency spectrum

The calculations of sound levels at various distances from the sound source were made for frequencies of up to 4 kHz using a numerical model of underwater acoustic propagation. For higher frequencies, transmission losses at 4 kHz were included after a correction had been made for an increased attenuation (Francois and Garrison 1982a; 1982b).

3.3.2.5 Sound attenuation in water

Sound attenuation in seawater depends on its temperature, salinity, pressure, and acidity (pH). The salinity in the Baltic Sea is more than half that in the open ocean and it is around 8 PSU. The UAS model includes sound attenuation in the water column using the empirical model of Francois and Garrison (Francois and Garrison, 1982a; 1982b), which decomposes the absorption coefficient into three components corresponding to contributions of boric acid, magnesium sulphate, and pure water (Lurton, 2010). Further details, including the equations used, can be found in the scientific documentation gathered for the UAS (MIKE DHI, 2023).

Low salinity levels in the Baltic Sea increase the absorption coefficient for low frequencies (below 500 Hz) and decrease it for high frequencies (above 1.25 kHz) compared to both the UAS model for standard salinity (35) and the simplified model (Richardson et al., 1995) [Figure 3.7].

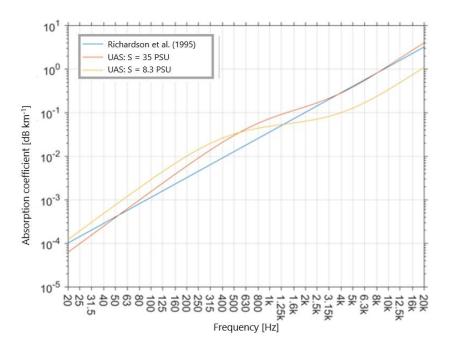
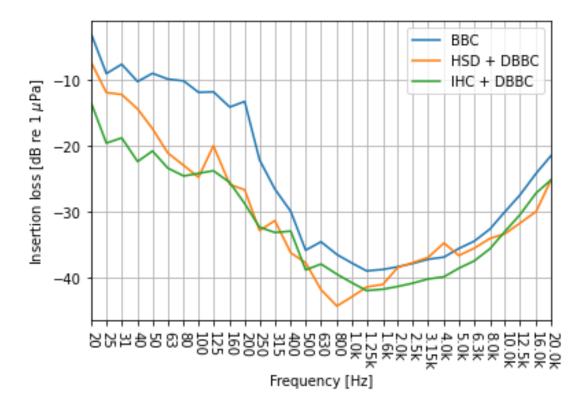


Figure 3.7.The absorption coefficient derived from the model developed by Francois and Garrison (1982a;
1982b) used in the MIKE UAS compared to the simplified model of Richardson et al. (1995).
Predictions in the MIKE UAS refer to values in the sound channel (pH = 8 and T = 3.1°C at a depth
of approximately 50 m) with salinity as indicated in the legend

3.3.3 Noise mitigation

Different noise mitigation systems can contribute to reducing noise levels while piling. In this analysis, depending on the location, the examples of noise reduction systems or their combinations were used for which data on sound reduction levels exist. All systems refer to secondary noise reduction, i.e. to reducing sound propagation in the water column. It should be emphasised that constantly developing


technologies may contribute to the advance of new noise reduction systems in the future. A brief description of the individual systems selected for the analysis is presented below.

A bubble curtain is a plane or "wall" of air bubbles generated around the location where pile driving will take place. Air bubbles in the bubble curtain create an acoustical impedance mismatch which is effective in blocking sound transmission (Spence et al. 2007). In addition, resonance effects lead to additional attenuation of the propagated wave. In this analysis, insertion losses taken from Bellmann et al. (2020) were used. They were modified to take into account the dependence of the BBC reduction level on the water depth. The most up-to-date broadband insertion losses as described by Bellmann et al. (2020), available for a depth of 40 m, were taken into account and scaled to the water depth corresponding to the piling location. The scaling used was taken from von Pein (2024). The spectral reduction was obtained by taking into account the average of the measured insertion losses for different flows based on Bellmann et al. (2020) with a modification at frequencies around 100 Hz to match the broadband reduction.

In addition, the analyses included a patented noise mitigation system in the form of an HSD shield combined with a double big bubble curtain (HSD + DBBC). The HSD shield is made of a specially designed mesh with sound-dampening elements. The mesh is installed around the monopile along its entire height. In this way, the noise is reduced directly at its source. The double bubble curtain consists of two rings of pipes placed on the seabed around the entire installation, at a certain distance from each other. The corresponding insertion losses were taken from Bellmann et al. (2020).

The analyses performed for the northern location required the use of another system, which is characterised by the highest reduction of broadband SEL among the previously discussed noise mitigation measures. The analyses took into account a system consisting of the IQIP shield in combination with the DBBC belonging to the IQIP company, formerly known as IHC. The shield consists of a double-walled casing filled with air. In addition, a double bubble curtain is installed between the casing and the foundation. The considered insertion losses were taken from Bellmann et al. (2020) and slightly modified to match the expected broadband reduction. The high-frequency insertion losses were modified if the IQIP + DBBC results were lower than those obtained with a DBBC alone. The DBBC insertion losses were obtained by adding a 3-dB higher reduction than that assumed for a BBC, as indicated by Bellmann et al. (2020).

The levels of frequency-dependent SEL reduction for all the considered mitigation systems are presented in the figure below [Figure 3.8].

Figure 3.8. Frequency-dependent SEL reduction for a mitigation system in the form of BBC, HSD + DBBC and IQIP + DBBC (Bellmann, 2020)

The next table [Table 3.5] includes information on the sound levels at the source as used in the modelling without and with the mitigation measures in the form of BBC, HSD + DBBC, and IQIP + DBBC applied.

Parameter	The northern location	The central location	The southern location
SEL [dB re 1 μPa ² ·s]	228.9	228.4	230.1
SPL _{peak} [dB re 1 µPa]	248.9	248.4	250.1
SEL _{cum} [dB re 1 µPa ² ·s]	267.1	266.5	268.2
BBC SEL [dB re 1 μPa ² ·s]	218.8	-	220.7
BBC SPL _{peak} [dB re 1 µPa]	238.8	-	240.7
BBC SEL _{cum} [dB re 1 µPa ² ·s]	256.9	-	258.8
HSD + DBBC SEL [dB re 1 µPa ^{2.} s]	210.6	210.1	-
HSD + DBBC SPL _{peak} [dB re 1 µPa]	230.6	230.1	-
HSD + DBBC SEL _{cum} [dB re 1 µPa ² ·s]	249.5	248.2	-
IQIP + DBBC SEL [dB re 1 μPa ² ·s]	206.2	-	-
IQIP + DBBC SPL _{peak} [dB re 1 μPa]	226.2	-	-
IQIP + DBBC SEL _{cum} [dB re 1 µPa ^{2.} s]	244.3	-	-

 Table 3.5.
 A summary of source levels with and without BBC, HSD+DBBC and IQIP+DBBC

3.3.4 Noise levels at the boundary of the Natura 2000 area

The noise levels received at the boundary of the nearby Natura 2000 site Hoburgs bank och Midsjöbankarna – SE0330308 were analysed as well because this area requires special protection. The

analyses were conducted based on SEL_{cum} , but they do not take into account the escape model. The calculations were made for the PTS and TTS threshold values for cetaceans from the HF group, due to their conservation status.

The results are presented as differences in noise levels (in dB) between the SEL values calculated at the boundary of the Natura 2000 site and the noise thresholds.

3.3.5 Impact on the Natura 2000 site

The analyses also took into account the percentage of the Natura 2000 site Hoburgs bank och Midsjöbankarna – SE0330308, which may be affected by the potentially negative behavioural response possible for the harbour porpoise. For this purpose, the ranges of VHF-weighted SPL_{125ms} were analysed in relation to the behavioural response and the percentage of the impact area that overlaps with the protected area was calculated for the entire analysed Natura 2000 site. The analyses were conducted taking into account mitigation measures for all analysed locations.

3.3.6 The propagation modelling of noise from piling at several locations (the cumulative model)

This task involved investigating the impact of piling conducted simultaneously at several locations within and outside the Baltica-1 OWF area" Bałtyk I, Kriegers Flak I, Kriegers Flak II Nord, Kriegers Flak II Syd, Energy Island Bornholm, Njord, Öland-Hoburg I, Baltic Central, Baltic Offshore Beta, Virrus, Neptunus, Södra Victoria, Bornholm Bassin Øst, and Baltic Edge. The numerical modelling results on piling at a single location provided input to the cumulative model. Different scenarios with multiple piling sources were analysed by changing the applied source level and swapping the superposition of individual acoustic fields. Based on these analyses, a generalised conservative estimate of the impact areas for simultaneous piling at different locations was established. The results obtained depend only on the number of simultaneous piling operations regardless of their exact location and the distance from one another. In this way, different combinations of up to four simultaneous piling locations could be analysed. The simulations were performed considering the mitigation measures in the form of BBC, HSD + DBBC system and IQIP + DBBC depending on the location. The noise criteria are identical to the ones used in the assessment of noise from a single location.

3.3.6.1 Overlapping sound fields

Assuming that the transmission losses for all sources are similar, the main task was to identify to what extent the noise from the different locations overlaps, i.e. how different sounds are added together. The three approaches used differed in terms of distance between the sources. They are described in the subsequent subchapters.

3.3.6.2 The overlapping of sound fields from piling sources located close to each other (< 1 km)

Sources located approximately 1 km apart were treated as two sources in one location. Such a situation may occur in the case of conducted piling simultaneously in two locations in the Baltica-1 OWF area. In this case, the two spectra are overlaid at the source location to obtain a cumulative spectrum, to which the transmission loss (TL) level is then referred. For two close sources, the following was obtained: $SEL_{cum} = SEL + 3 dB$, i.e. the original noise generated by one source was increased by 3 dB.

3.3.6.3 The overlapping of sound fields from piling sources located at an average distance from each other (20 km)

Due to the variations in the distances from the source and other TL parameters, it is not possible to make a simplification by summing the acoustic fields from two sources at an average distance from each other (i.e. 20 km), as in this case.

Two piling sources were located 20 km apart. This may apply to simultaneous piling in the area of the Baltica-1 OWF with one source located in the northern and the other in the southern part of the farm, as well as simultaneous piling in the nearby OWFs, i.e. Bałtyk I and Södra Victoria. The sound levels for one location were interpolated onto the grid of the other location. All energy levels from each calculation cell were added, i.e. the squares of the amplitudes were summed up. For sound levels in decibels, the summation is carried out in compliance with the following formula:

$$\mathsf{SEL}_{\mathsf{cum}} = 10 \log_{10} \left(\sum_{i} 10^{0.1 \, \mathsf{SEL}_i} \right)$$

where SEL_i represents the levels of exposure to sound from different sources in the grid cell under consideration.

3.3.6.4 The overlapping of sound fields from piling sources located at considerable distances from each other

If piling is conducted at two locations far enough apart so that their zones of impact do not overlap, the impact areas of individual sources are added together. The increase in the noise levels related to the distance from the source is then treated as negligible. It should be noted that for very short distances to threshold values (which occur frequently for the PTS), this assumption is also true, even though the distances between the sources can be even less than 20 km. The assumption for sources much further apart requires a minimum distance that is significantly greater than twice the original impact distance for one source.

3.3.6.5 The approaches considered

Based on the three combinations outlined above, the following scenarios were analysed in terms of ranges and areas of impact:

- 2 sources < 1 km apart;
- 2 sources 20 km apart;
- 2 sources at a significant distance.
- 3 sources 2 sources < 1 km apart and 1 source 20 km away;
- 3 sources 2 sources 20 km apart and 1 source at a significant distance;
- 4 sources summed results for three sources and one source.

3.4 THE CALCULATION OF BIOLOGICAL IMPACTS

The impact zones are delineated using criteria for acoustic thresholds, which designate noise levels that should not be exceeded so as not to cause impacts on marine organisms. These criteria have been developed mainly for hearing loss, i.e. TTS, PTS, and reversible hearing loss, for marine mammals and fish (Popper et al., 2014; NMFS, 2018, 2023). The criteria for acoustic thresholds relating to behavioural response are not so well established and popular, which has to do with the complexity of responses

among individuals. However, there are criteria for changing the behaviour of marine mammals, which were used in the conducted assessment (Russel et al., 2016; Tougaard, 2021).

In addition, following the latest guidelines, DHI has developed a new methodology to assess impact ranges for marine mammals and fish. The assumptions used aim to provide comprehensive results and a more realistic assessment. Chapter 3.4.3 presents their key features and assumptions.

3.4.1 Threshold values used in the modelling

3.4.1.1 Porpoises and seals

The acoustic threshold criteria related to the behavioural response are less established and popular, which is related to the complexity of the responses among individuals.

The cumulative SEL was calculated based on a 24-hour interval, considering the number of impacts needed to drive the entire foundation.

The thresholds for behavioural response were taken from Tougaard (2021), taking into account VHF-weighted SPL_{125ms} in the case of the porpoise, and available research on seals (Russell et al., 2016).

A summary of the criteria values can be found in the table below [Table 3.6].

Table 3.6.An overview of noise exposure criteria used to calculate the impact ranges for marine mammals at
the stage of construction

Source	Effect	Species	Modelled sound type	SEL / SPL	SPL _{peak}
	PTS	Harbour porpoise	Single and cumulative blow	155 dB re 1 μPa²s (HF-weighted SEL)	202 dB re 1 μPa
NMFS 2018	TTS	Harbour porpoise	Single and cumulative blow	140 dB re 1 μPa²s (HF-weighted SEL)	196 dB re 1 μPa
NMF3 2018	PTS	Harbour seal and grey seal	Single and cumulative blow	185 dB re 1 μPa ² s (PW-weighted SEL)	218 dB re 1 μPa
	TTS	Harbour seal and grey seal	Single and cumulative blow	170 dB re 1 μPa²s (PW-weighted SEL)	212 dB re 1 μPa
Tougaard, 2021	Changes in behaviour (behavioural criterion)	Harbour porpoise	Single blow	103 dB re 1 μPa (VHF-weighted SPL _{125ms})	-
Russell et al. 2016	Changes in behaviour (behavioural criterion)	Harbour seal and grey seal	Single blow	158 dB re 1 μPa²s (unweighted SEL)	212 dB re 1 μPa

3.4.1.2 Fish

The noise exposure criteria for fish, for TTS and reversible hearing loss during the construction stage, were derived from an expert review (Popper et al., 2014), while the behavioural criteria are based on a study by Hawkins et al. (2014).

It should be noted that studies of fish indicate that these organisms are able to rebuild cells responsible for receiving sounds (e.g. Popper et al., 2014, 2019). For this reason, according to reports from scientists studying the impact of underwater noise on fish, the impact defined as permanent threshold

shift (PTS) for mammals and sea turtles is not accurate in the case of fish and should be treated as a reversible phenomenon (here: reversible hearing loss).

A summary of noise exposure values for fish with swim bladders is presented in the table below [Table 3.7].

Table 3.7.An overview of noise exposure criteria used to calculate the impact ranges for fish with swim
bladders at the stage of construction

Source	Effect	Animal group	Modelled sound type	SEL (unweighted)
Popper et al. 2014	Reversible hearing loss	Fish with swim bladders	Single and cumulative blow	203 dB re. 1 µPa²s
	TTS	Fish with swim bladders	Single and cumulative blow	186 dB re. 1 μPa²s
Hawkins et al. 2014	Behavioural response (changes in behaviour)	Fish with swim bladders	Single blow	135 dB re. 1 μPa²s

For fish without swim bladders, the relevant stimulus for underwater sound is not pressure, but rather a part of the motion of sound wave particles (Popper and Hawkins, 2018). Currently, there are no clear criteria defining the ranges of impact for this group of animals in terms of particle movement, so a quantitative assessment is not possible.

3.4.2 Impact ranges and areas

The extent of a given impact is defined as a closed area where specific marine mammals are affected. This region has been termed the impact area A_{impact} and it can be calculated by adding all angular sectors with a radius r_i defined by the distance to the impact thresholds:

$$A_{\text{impact}} = \sum_{i=1}^{72} \pi r_i^2 \frac{\mathrm{d}\alpha}{_{360^\circ}}.$$

The angular resolution of $d\alpha = 360^{\circ}/72 = 5^{\circ}$ has been used in this study.

3.4.3 Additional parameters

3.4.3.1 Animal motion model (Skjellerup et al., 2015) – marine mammals

According to the guidelines of Skjellerup et al. (2015), marine mammals tend to flee from the sound source radially, at a certain speed ($v = 1.5 \text{ m} \cdot \text{s}^{-1}$). The received noise dose then accumulates on the path of the fleeing mammal and, due to increasing distance from the source, is lower than that affecting a static individual, staying in one place during the cumulated blows. Additionally, in their guidelines, Skjellerup et al. (2015) assume an initial radius of r_0 , which is mammal-free. This radius should be chosen in such a way that mammals can escape without suffering a hearing loss. In this study, the behavioural thresholds of marine mammals in response to piling are captured in the animal motion/escape model.

3.4.3.2 "Effective quiet" – marine mammals

An important concept is the so-called "effective quiet," defined by Finneran (2015) as the highest SPL that will cause neither a significant TTS impact nor a return to TTS levels induced by previous exposure to higher levels. Further, Finneran (2015) indicates that this value may be 124 dB relative to 1 μ Pa for porpoises and in support of this conclusion, he cites a study by Kastelein et al. (2002). This study does not directly investigate "effective quiet," but rather shows that even very low sound exposures can

lead to significant TTS impacts in harbour porpoises when the exposure duration is long. The lowest sound level leading to TTS in porpoises measured to date is 124 dB re 1 μ Pa. It can therefore be seen as a preliminary value until more accurate data can be obtained. "Effective quiet" was applied to the model during the construction and operation phase with the value of 124 dB was compared with the unweighted SEL.

4 THE MODELLING RESULTS FOR THE NORTHERN LOCATION

4.1 THE MODELLING OF NOISE PROPAGATION FOR PILING IN A SINGLE LOCATION

This chapter presents the results of modelling carried out for the northern location in the Baltica-1 OWF in the winter and summer seasons. The impact ranges for different threshold values are presented in the form of tables, and sound propagation maps are included.

4.1.1 The level of exposure to sound generated by a single blow

The SEL value for a single blow did not exceed 150 dB in the winter season and 135 dB in the summer season at the boundary of the modelled area at a distance of 150 km from the sound source. The sound propagated mainly in the directions of north, south-west, and east from the piling site, where the highest sound levels were recorded [Figure 4.1].

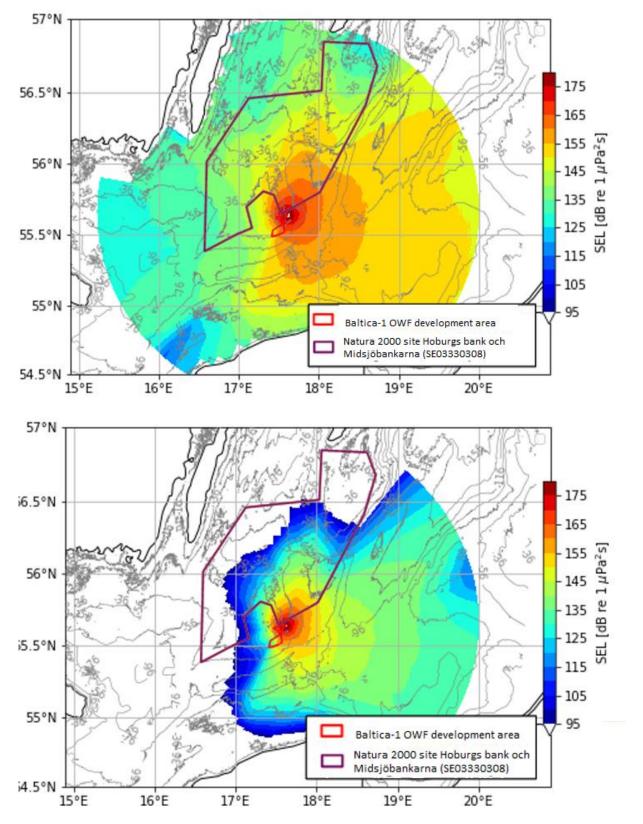


Figure 4.1. The map of unweighted SEL above the acoustic background for a single blow in the area of the Baltica-1 OWF, in the winter (top) and summer (bottom). Grey lines: isobaths

4.1.1.1 Harbour porpoise

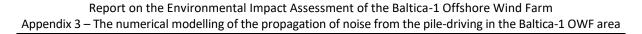
The impact ranges and areas calculated for the winter season were higher than those obtained for the summer season.

The largest impact ranges were recorded for the behavioural response.

The estimates of cumulative SEL for the TTS and PTS were higher than in the case of a single blow, and TTS ranges exceeded the PTS ranges. The maximum cumulative impact range in the winter season was 104 km, and the values for a single blow were up to 5.4 km for TTS.

For the SPL_{peak}, the impact ranges for the TTS and PTS from a single blow were higher for the TTS with a maximum value of 4.0 km, also in the winter season.

The use of mitigation measures contributed to the reduction of the impact ranges and areas of all analysed effects. All the measures used contributed to a significant reduction of impacts causing TTS and PTS, while the smallest impact ranges of the behavioural response were obtained after the application of the HSD + DBBC system.


All ranges calculated for individual threshold values are shown in tabular form [Table 4.1], while noise propagation maps are presented in the following figures [Figure 4.2–Figure 4.9].

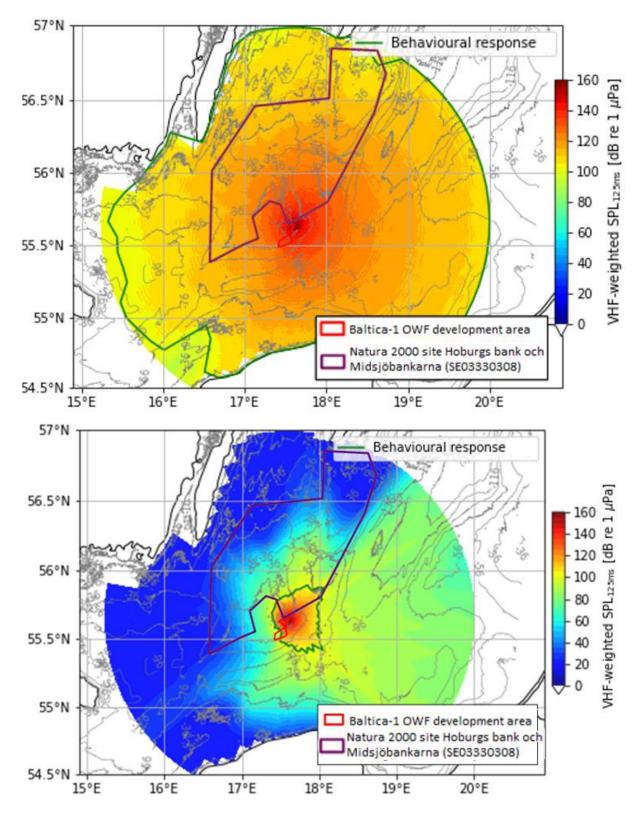
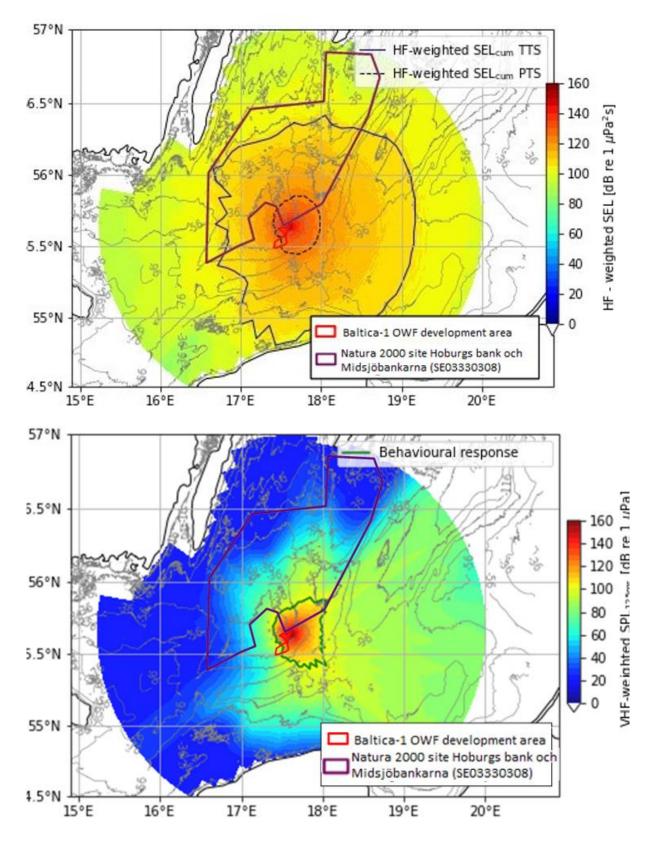
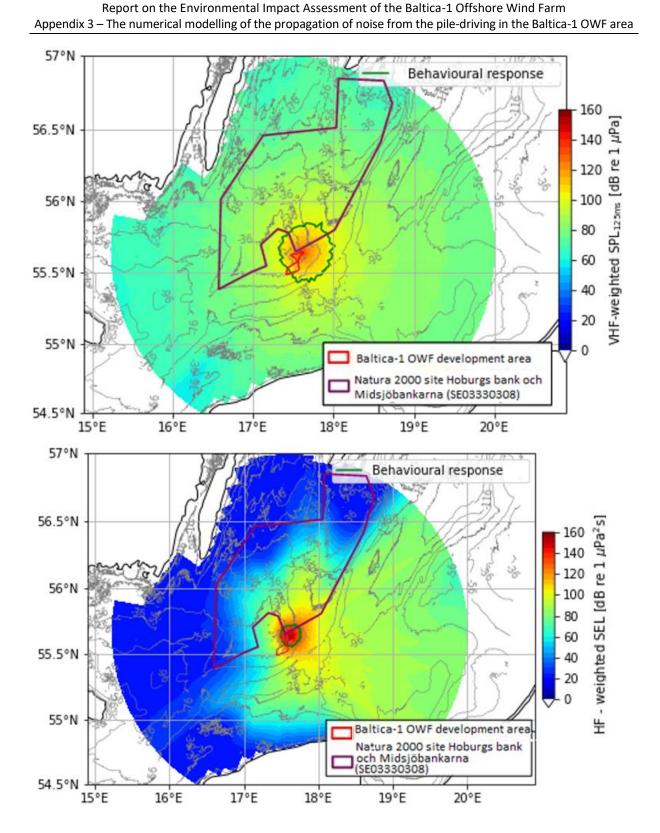
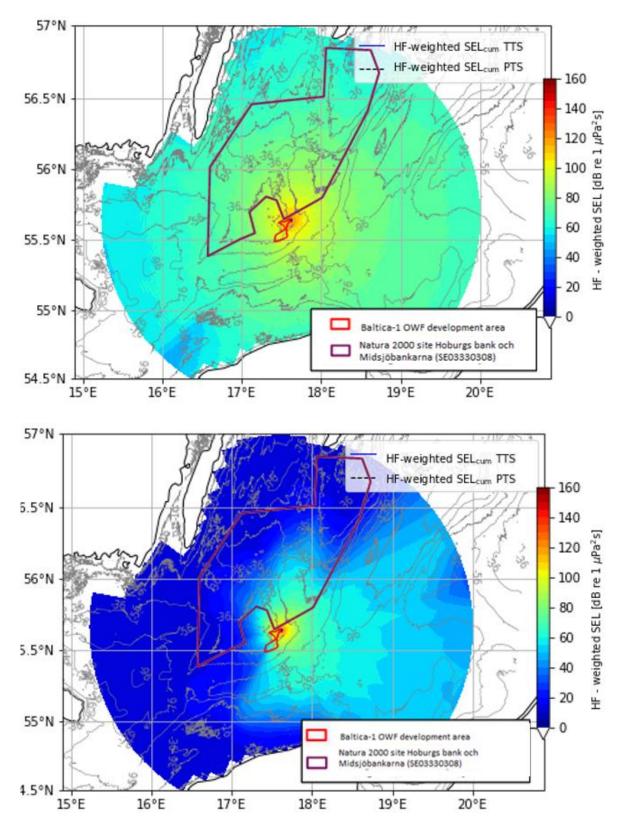

Season	Mitigation type	Effect	VHF-weighted SPL _{125ms} [dB re 1 μPa] / HF-weighted SEL [dB re 1 μPa ² s]			unweighted SPL _{peak} [dB re 1 µPa]	
			Mean distance [km]	Maximum distance [km]	lmpact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	133	150	57086	-	-
		TTS (single blow)	3.9	5.4	49.7	3.7	4.0
	-	TTS (cumulative effect)	80.0	104	21047	-	-
		PTS (single blow)	0.4	0.6	0.6	1.4	1.6
		PTS (cumulative effect)	19.7	26.3	1285	-	-
		Behavioural response	20.9	28.1	1394	-	-
	BBC	TTS (single blow)	0.1	0.1	0.03	0.7	0.7
		TTS (cumulative effect)	0.6	0.8	1.2	-	-
		PTS (single blow)	0.1	0.1	0.03	0.2	0.2
Winter		PTS (cumulative effect)	0.1	0.1	0.1	-	-
winter		Behavioural response	16.4	20.8	863	-	-
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	HSD + DBBC	TTS (cumulative effect)	0.3	0.3	0.23	-	-
	0000	PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	17.3	20.8	956	-	-
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	IQIP + DBBC	TTS (cumulative effect)	0.3	0.4	0.3	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-

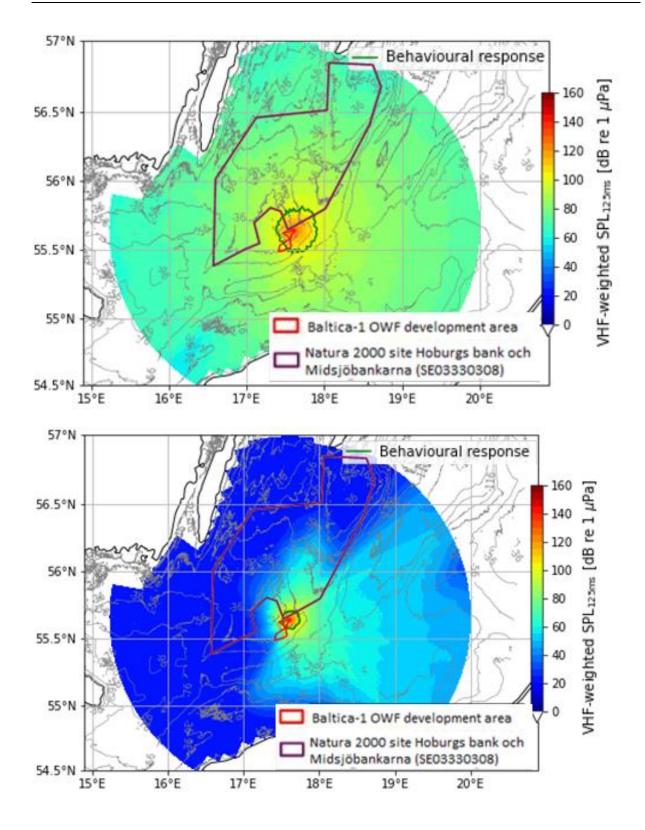
 Table 4.1.
 The impact ranges and areas for the harbour porpoise calculated for the Baltica-1 OWF

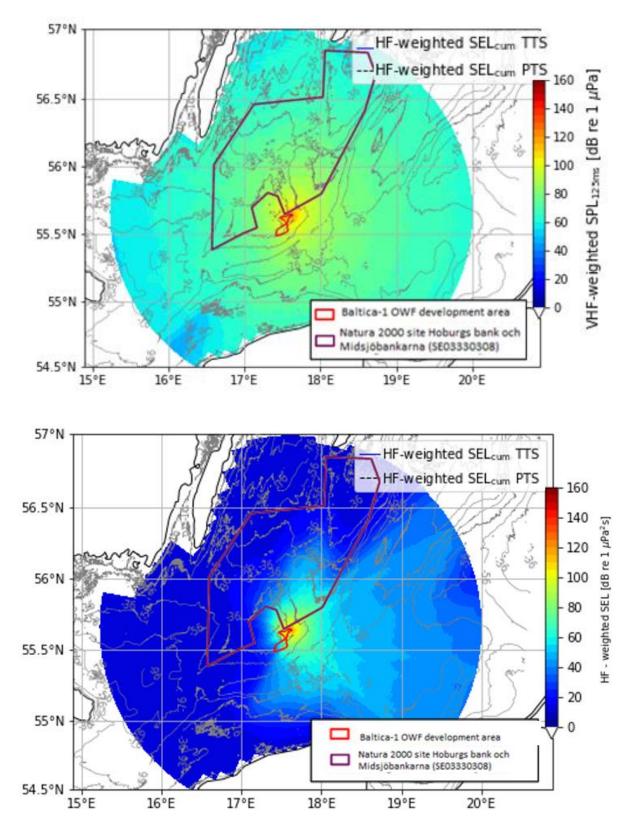

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

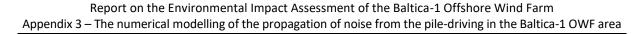
Season	Mitigation	Effect	VHF-weighted SPL _{125ms} [dB re 1 μPa] / HF-weighted SEL [dB re 1 μPa ² s]			unweighted SPL _{peak} [dB re 1 μPa]	
	type	Lifett	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	21.4	37.3	1581	-	-
		TTS (single blow)	2.5	3.2	19.2	3.0	3.4
	-	TTS (cumulative effect)	6.9	8.7	150	-	-
		PTS (single blow)	0.3	0.5	0.4	1.2	1.5
		PTS (cumulative effect)	3.6	4.3	39.8	-	-
	BBC	Behavioural response	8.6	10.7	233	-	-
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
		TTS (cumulative effect)	0.5	0.6	0.7	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
Current or		PTS (cumulative effect)	0.1	0.1	0.03	-	-
Summer		Behavioural response	7.2	8.6	164	-	-
		TTS (single blow)	0.1	0.1	0.03	0.2	0.2
	HSD + DBBC	TTS (cumulative effect)	0.2	0.2	0.1	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	7.5	9.0	178	-	-
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	IQIP + DBBC	TTS (cumulative effect)	0.2	0.3	0.14	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-




Figure 4.2. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise, in the winter (top) and summer (bottom)


Figure 4.3. The map of HF-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise, in the winter (top) and summer (bottom)


Figure 4.4. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)


Figure 4.5. The map of HF-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

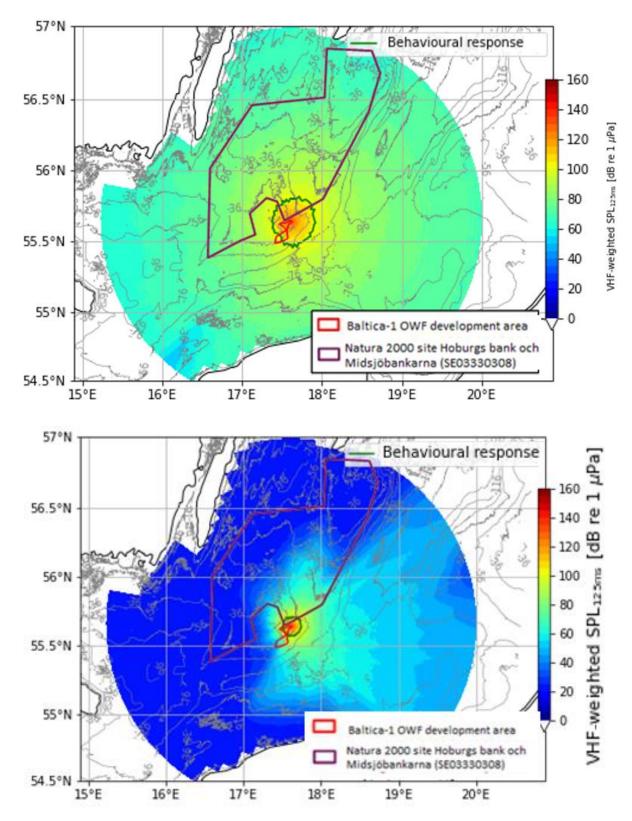


Figure 4.6. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the HSD + DBBC system applied, in the winter (top) and summer (bottom)

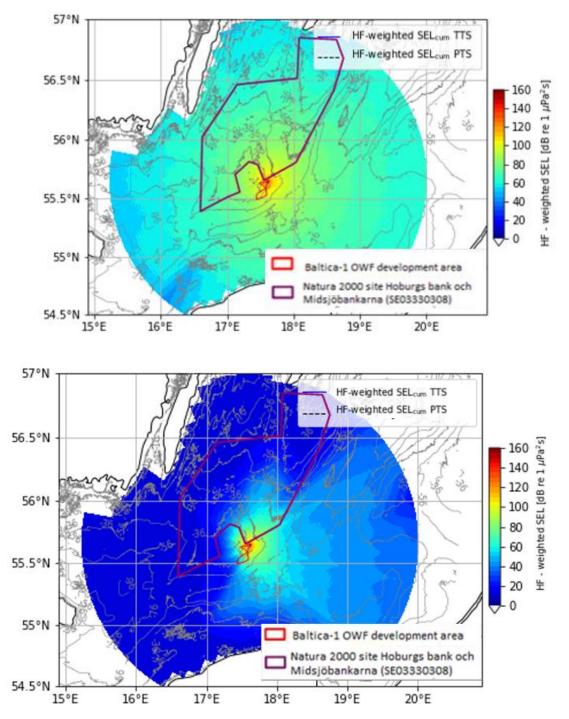


Figure 4.7. The map of HF-weighted SPL_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the HSD + DBBC system applied, in the winter (top) and summer (bottom)

Figure 4.8. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

Figure 4.9. The map of HF-weighted SPL_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

4.1.1.2 Grey and harbour seal

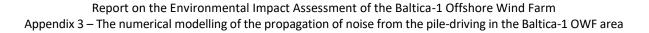
All impact ranges and areas (except for those of the cumulative TTS) calculated for the grey and harbour seal were lower than those obtained for the harbour porpoise.

The impact ranges and areas calculated for the winter season were higher than those obtained for the summer season.

The largest impact range and associated impact area were obtained for the cumulative TTS in the winter season, which amounted to 18,656 km².

Impacts calculated for the SEL from a single blow reached a maximum range of only 0.3 km for the TTS.

The use of mitigation measures contributed to the reduction of the impact ranges and areas of all analysed effects. The HSD + DBBC and IQIP + DBBC mitigation systems contributed to a significant reduction of cumulative TTS and PTS impacts of 0.1 km. On the other hand, the smallest impact ranges of behavioural response were obtained after the application of the IQIP + DBBC system.


All ranges calculated for individual threshold values are shown in tabular form [Table 4.2], while noise propagation maps are presented in the following figures [Figure 4.10–Figure 4.17].

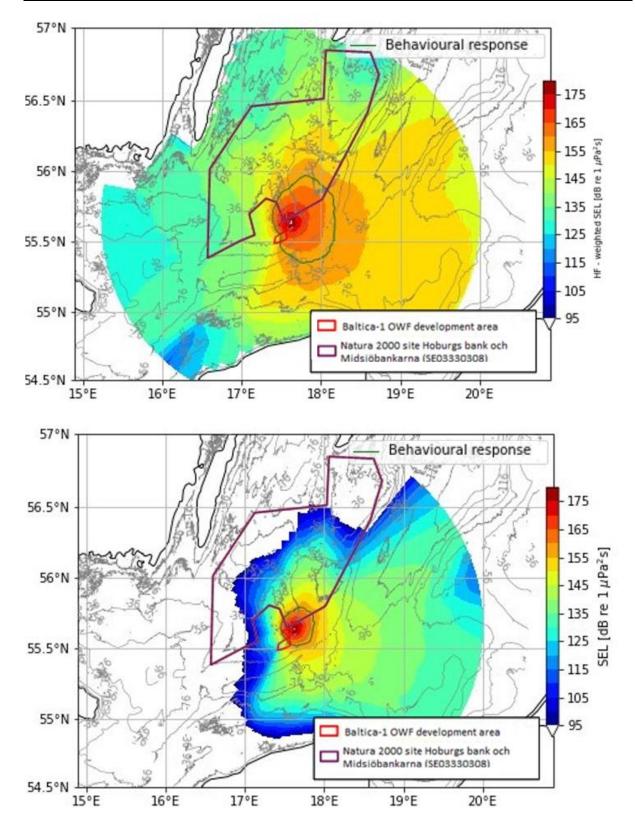
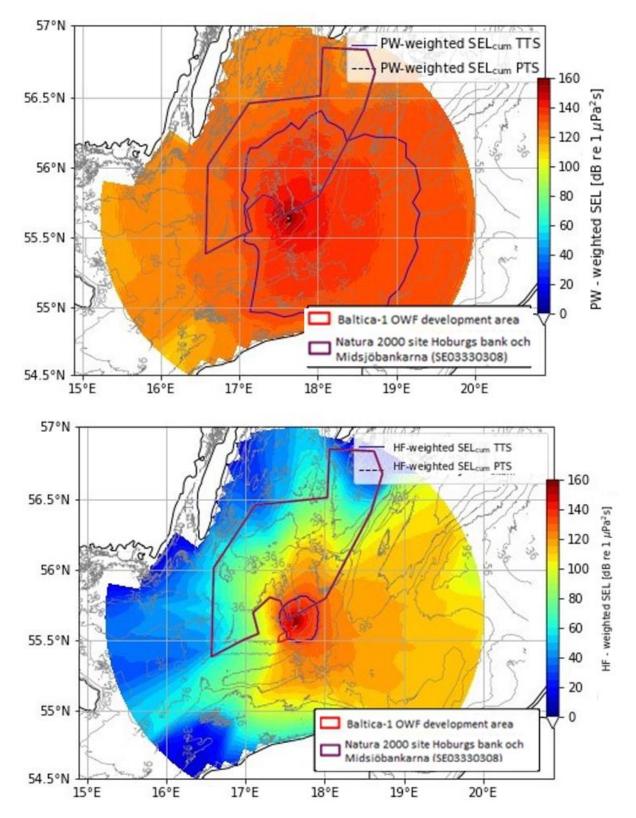
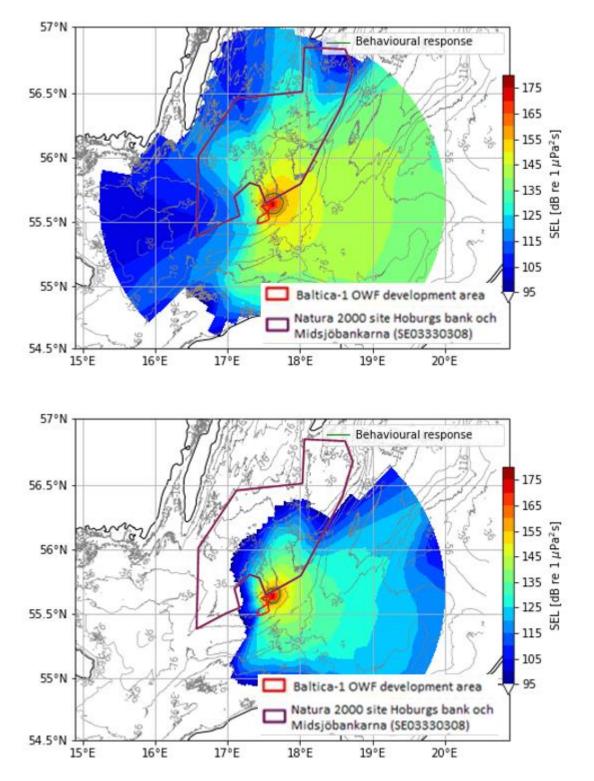

	Mitigation		unweighted SEL / Pw- weighted SEL [dB re 1 µPa²s]			unweighted SPL _{peak} [dB re 1 µPa]	
Season	type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	26.9	39.4	2585	0.3	0.3
		TTS (single blow)	0.3	0.3	0.28	0.3	0.3
	-	TTS (cumulative effect)	72.2	112	18656	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	2.3	2.9	17.0	-	-
		Behavioural response	8.7	10.3	241	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	BBC	TTS (cumulative effect)	1.5	2.1	7.3	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
Martan		PTS (cumulative effect)	0.1	0.1	0.03	-	-
Winter	HSD + DBBC	Behavioural response	3.2	3.4	31.3	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
		TTS (cumulative effect)	0.1	0.1	0.03	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	1.6	1.9	9.6	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	IQIP + DBBC	TTS (cumulative effect)	0.1	0.1	0.03	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	13.6	19.1	605	0.3	0.3
		TTS (single blow)	0.3	0.3	0.3	0.3	0.3
	-	TTS (cumulative effect)	16.2	21.8	867	-	-
Summer		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.4	0.5	0.6	-	-
	DDC	Behavioural response	6.5	7.7	132	0.1	0.1
	BBC	TTS (single blow)	0.1	0.1	0.03	0.1	0.1

Table 4.2. The impact ranges and areas calculated for the grey seal and harbour seal in the Baltica-1 area


Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

Season	Mitigation type		unweighted SEL / Pw- weighted SEL [dB re 1 µPa²s]			unweighted SPL _{peak} [dB re 1 μPa]	
		Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		TTS (cumulative effect)	0.4	0.5	0.6	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	2.7	3.0	23.1	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	HSD + DBBC	TTS (cumulative effect)	0.1	0.1	0.03	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-
		Behavioural response	1.5	1.6	7.3	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	IQIP + DBBC	TTS (cumulative effect)	0.1	0.1	0.03	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-



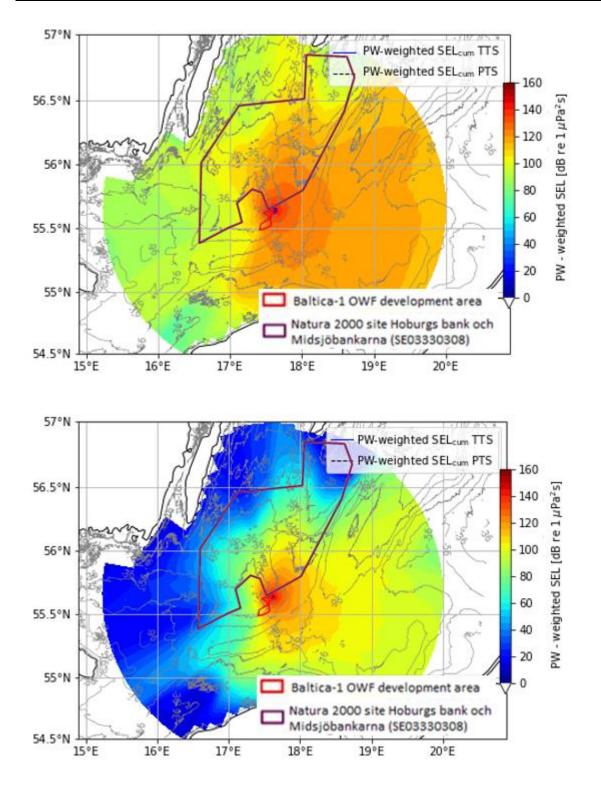

Figure 4.10. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal, in the winter (top) and summer (bottom)

Figure 4.11. The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal, in the winter (top) and summer (bottom)

Figure 4.12. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

Figure 4.13. The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

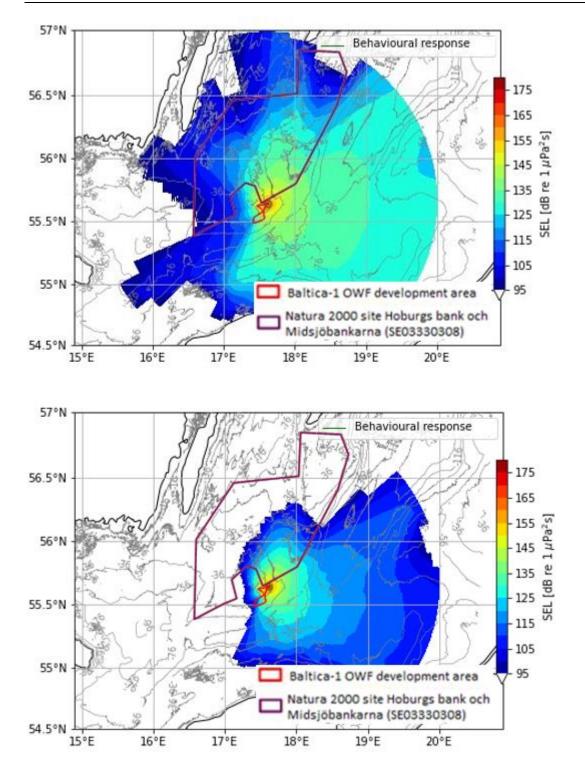
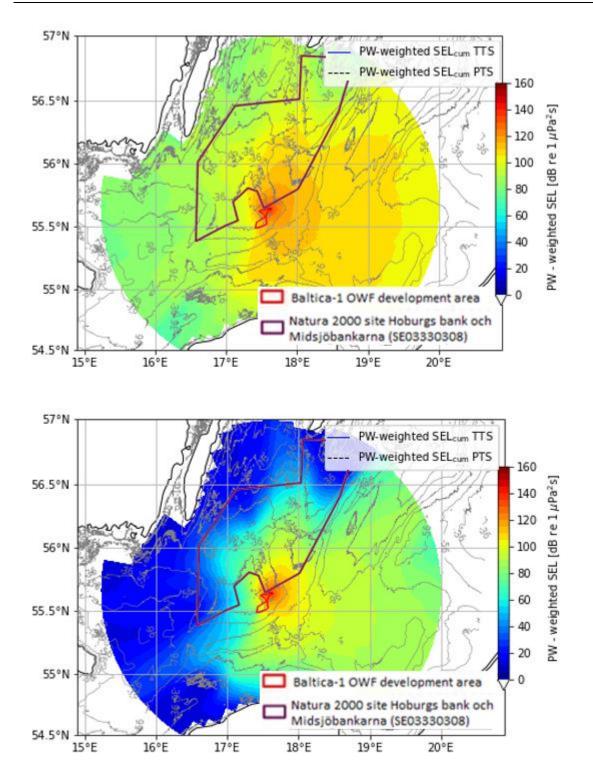



Figure 4.14. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

Figure 4.15. *The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal harbour seal the HSD + DBBC system applied, in the winter (top) and summer (bottom)*

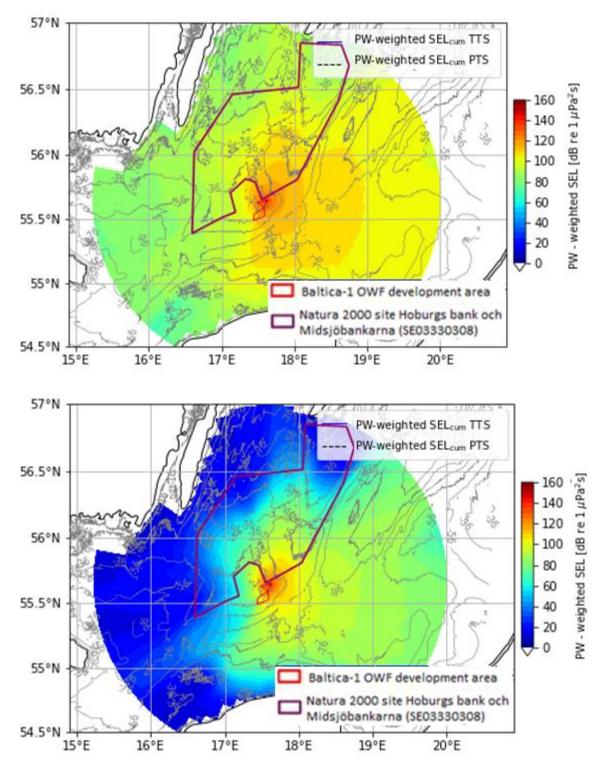



Figure 4.16. The map of unweighted SEL_{cum} above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

Figure 4.17. The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal harbour seal the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

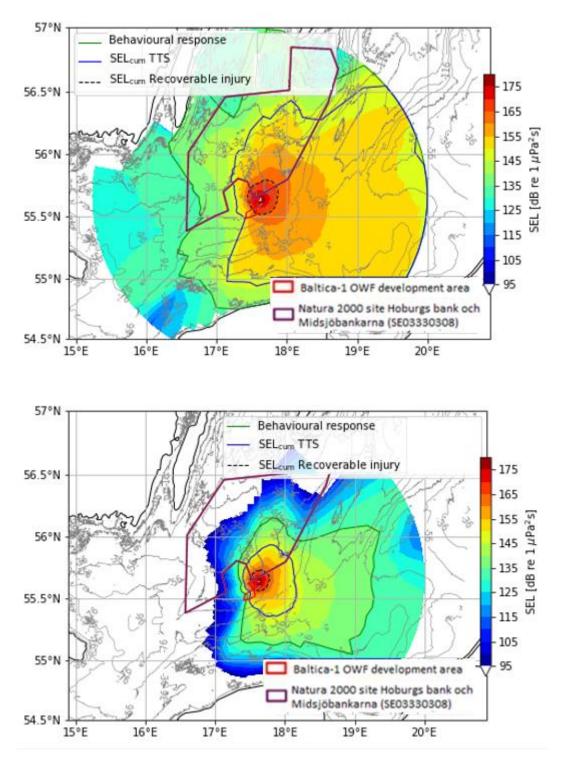
4.1.1.3 Fish with swim bladders

All ranges and areas of impact calculated for fish with swim bladders for the winter season were higher than those obtained for the summer season.

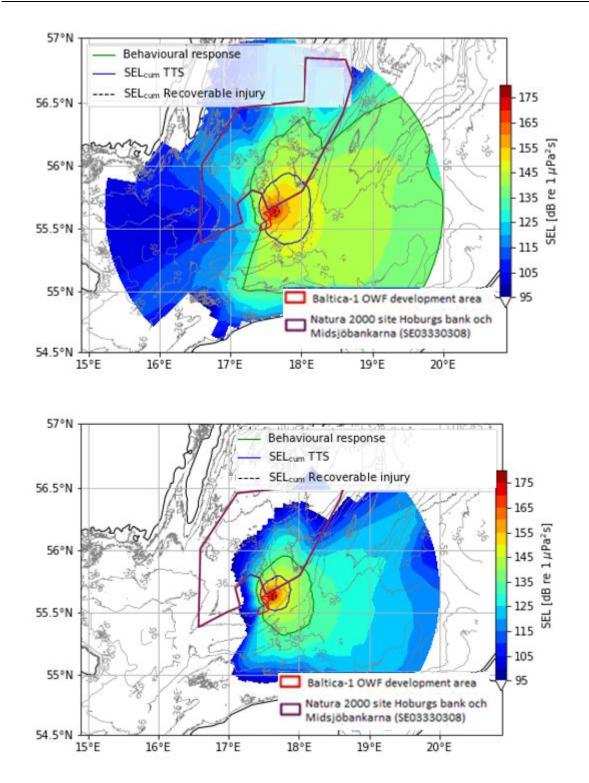
The maximum range of behavioural response and cumulative TTS for fish with swim bladders exceeded the model domain range of 150 km from the source, with the largest areas of impact among the analysed effects.

The predicted ranges of cumulative TTS and PTS were higher than the values obtained for a single blow, while the TTS ranges were higher than the ones obtained for the PTS.

The use of mitigation measures contributed to the reduction of the ranges and areas of impact of all analysed effects, and even after the application of the dual system in the form of HSD + DBBC, the ranges of behavioural response and cumulative TTS remained at a relatively high level. The smallest ranges of the impact of behavioural response were obtained after the application of the IQIP + DBBC system.


All ranges calculated for individual threshold values are shown in tabular form [Table 4.3], while noise propagation maps are presented in the following figures [Figure 4.18–Figure 4.21].

			unweighted SEL [dB re 1 μPa²s]			
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km²]	
		Behavioural response	112	150	42470	
		TTS (single blow)	0.6	0.7	1.3	
		TTS (cumulative effect)	79.6	150	27423	
	-	Reversible hearing loss (single blow)	0.1	0.1	0.03	
		Reversible hearing loss (cumulative effect)	14.0	19.2	639	
		Behavioural response	75.4	150	25820	
	ВВС	TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	34.9	37.5	2204	
		Reversible hearing loss (single blow)	0.1	0.1	0.03	
Minton		Reversible hearing loss (cumulative effect)	4.4	4.7	62.0	
Winter		Behavioural response	28.0	41.3	2844	
		TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	9.5	11.6	288	
	HSD + DBBC	Reversible hearing loss (single blow)	0.1	0.1	0.03	
		Reversible hearing loss (cumulative effect)	1.3	1.4	5.0	
		Behavioural response	22.5	33.2	1772	
		TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	7.0	8.0	158	
	IQIP + DBBC	Reversible hearing loss (single blow)	0.1	0.1	0.03	
		Reversible hearing loss (cumulative effect)	0.6	0.6	1.1	


Table 4.3. The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

			unweighted SEL [dB re 1 µPa ² s]			
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km²]	
		Behavioural response	52.7	118	11981	
		TTS (single blow)	0.7	0.7	1.5	
		TTS (cumulative effect)	25.6	39.1	2333	
	-	Reversible hearing loss (single blow)	0.1	0.1	0.01	
		Reversible hearing loss (cumulative effect)	9.0	11.2	259	
		Behavioural response	27.2	42.3	2676	
	BBC	TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	13.8	19.1	625	
		Reversible hearing loss (single blow)	0.1	0.1	0.03	
C		Reversible hearing loss (cumulative effect)	3.7	4.0	43.4	
Summer		Behavioural response	15.5	22.2	801	
		TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	7.3	8.8	169	
	HSD + DBBC	Reversible hearing loss (single blow)	0.1	0.1	0.03	
		Reversible hearing loss (cumulative effect)	1.2	1.2	4.5	
		Behavioural response	13.0	17.8	551	
		TTS (single blow)	0.1	0.1	0.03	
		TTS (cumulative effect)	5.5	6.4	95.0	
	IQIP + DBBC	Reversible hearing loss (single blow)	0.1	0.1	0.03	
		Reversible hearing loss (cumulative effect)	0.5	0.6	0.8	

Figure 4.18. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders, in the winter (top) and summer (bottom)

Figure 4.19. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)

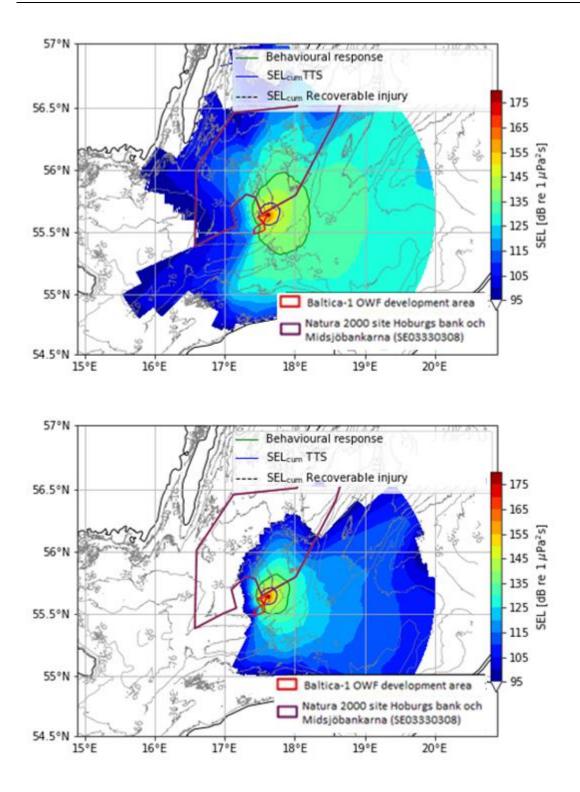


Figure 4.20. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

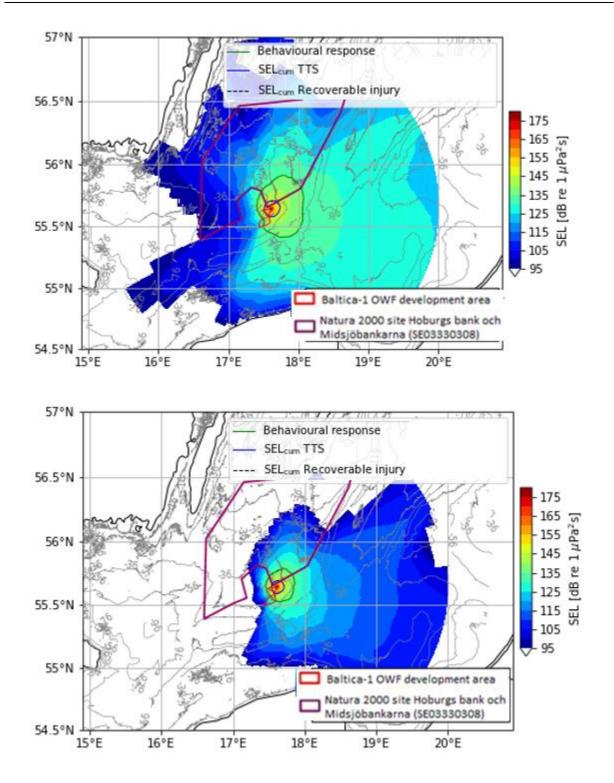


Figure 4.21. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

4.2 The modelling of noise propagation as a result of piling in several locations

This chapter presents the results of acoustic modelling in the winter and summer seasons performed for simultaneous piling in the northern location within the Baltica-1 OWF area and outside of it. The use of mitigation measures in the form of BBC, HSD + DBBC and IQIP + DBBC was taken into account. The areas of impact for individual acoustic thresholds and sound propagation maps were presented.

4.2.1 Harbour porpoise


As can be seen in the table below [Table 4.4], the areas of impact increased with the number of piling sources, reaching the highest values in the case of four locations. The smallest areas of impact were obtained for the scenario with the HSD + DBBC reduction system applied. Noise propagation maps are presented in the following figures [Figure 4.22–Figure 4.39].

Table 4.4.The impact areas for the harbour porpoise in case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: highest
values for 2 and 3 sources, respectively; piling with the BBC, HSD + DBBC and IQIP + DBBC mitigation systems applied)

Season	Mitigation type	Impact area [km ²]								
		Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources	
		Behavioural response	1394	2004	2312	2788	2805	3706	5100	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1	
	BBC	TTS (cumulative effect)	1.2	4.1	56.7	2.4	59.5	57.9	60.7	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	HSD + DBBC	Behavioural response	863	1295	1536	1726	1879	2399	3262	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
Winter		TTS (cumulative effect)	0.2	0.7	40.8	0.4	45.4	41.0	45.6	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	IQIP + DBBC	Behavioural response	956	1387	1635	1912	1983	2591	3547	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		TTS (cumulative effect)	0.3	0.9	29.4	0.6	36.9	31.4	37.2	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	BBC	Behavioural response	233	292	502	466	558	735	968	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		TTS (cumulative effect)	0.7	2	37.2	1.4	44.0	37.9	44.7	
Summer		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		Behavioural response	164	209	328	328	373	492	656	
	HSD + DBBC	TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	

Season	Mitigation type	Impact area [km ²]								
		Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources	
		TTS (cumulative effect)	0.1	0.4	0.2	0.2	0.8	0.3	0.9	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		Behavioural response	178	227	357	356	404	535	713	
	IQIP + DBBC	TTS (single blow)	0.03	0.03	0.06	0.06	0.6	0.09	0.6	
		TTS (cumulative effect)	0.1	0.6	0.3	0.3	0.9	0.4	1.0	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

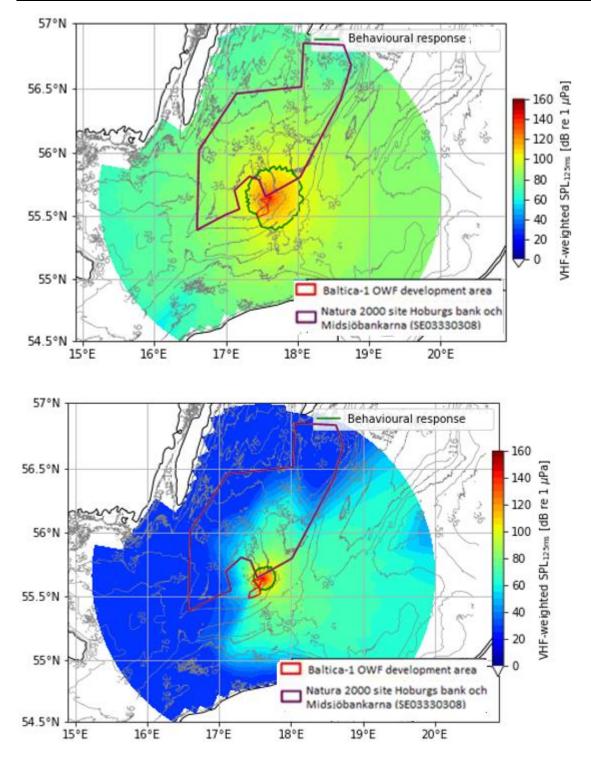


Figure 4.22. The map of HF-weighted SPL_{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

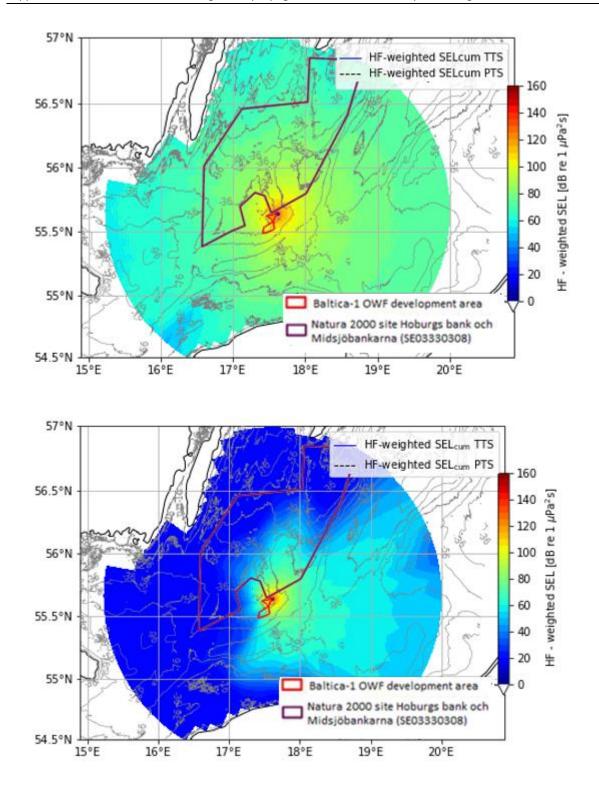


Figure 4.23. The map of HF-weighted SEL_{cum} from cumulated piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

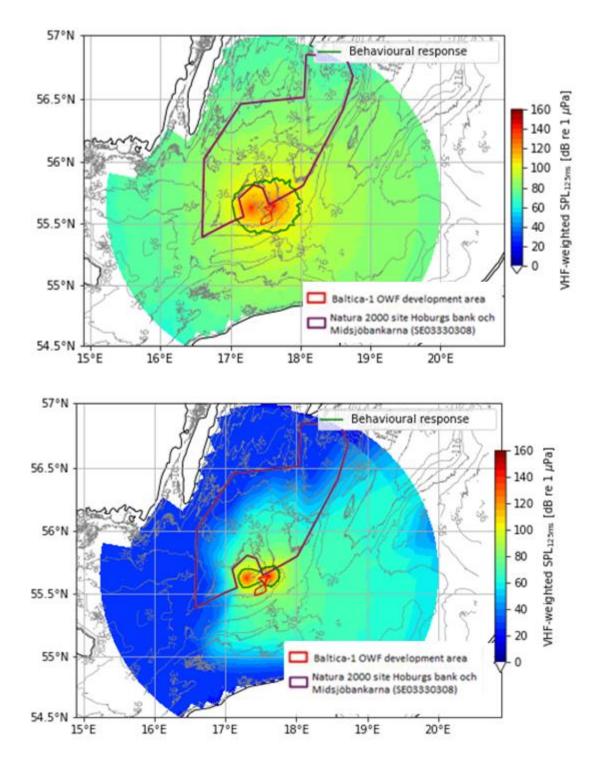


Figure 4.24. The map of VHF-weighted SPL_{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

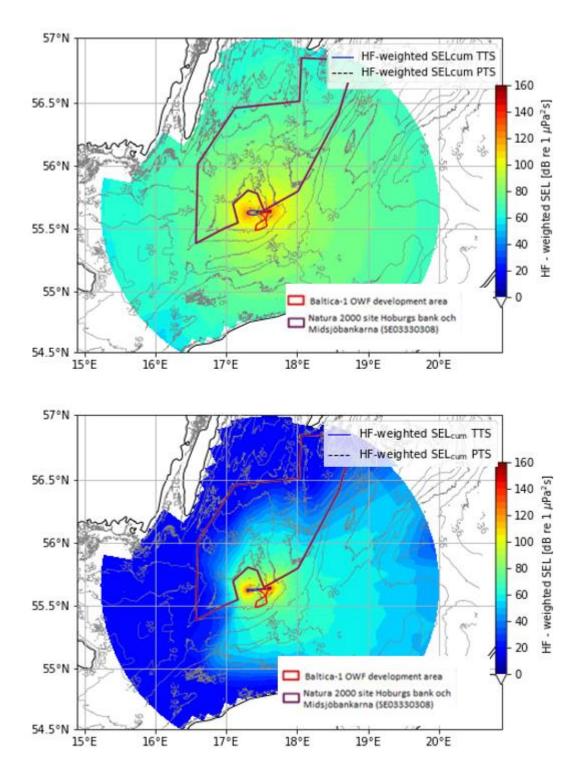


Figure 4.25. The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

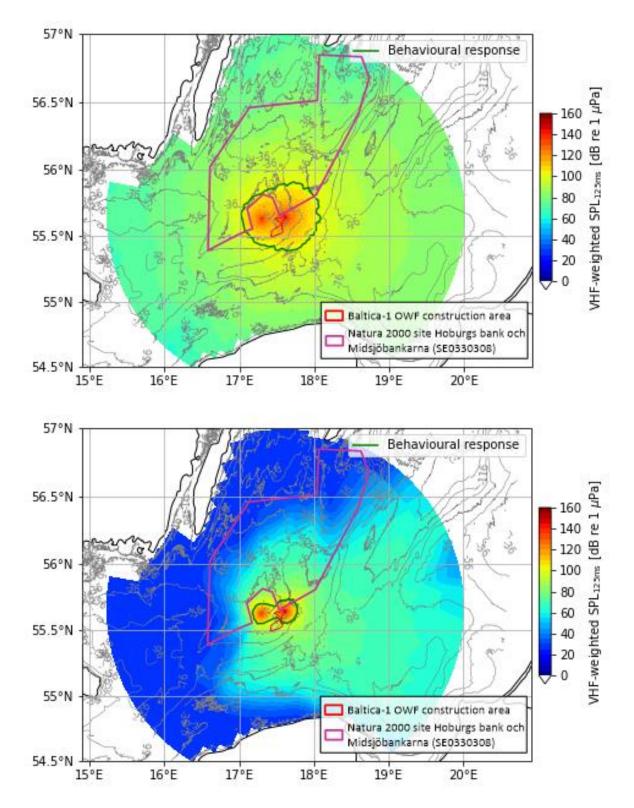


Figure 4.26. The map of VHF-weighted SPL_{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

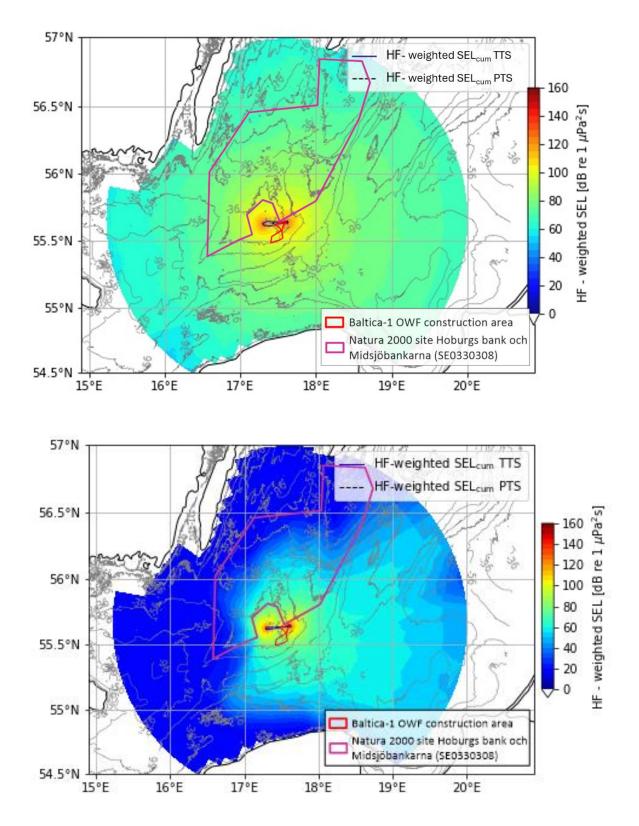


Figure 4.27. The map of HF-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied, in the winter (top) and summer (bottom)

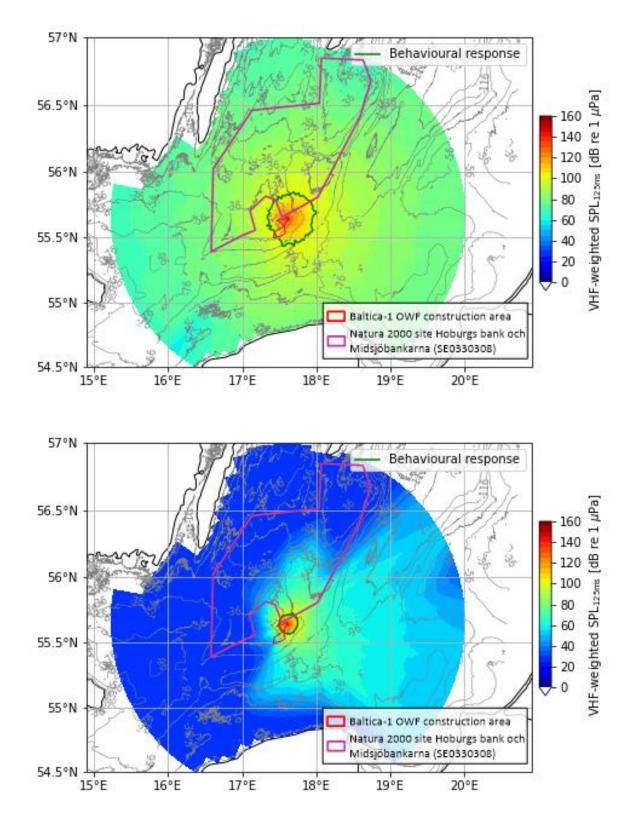


Figure 4.28. The map of VHF-weighted SPL_{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

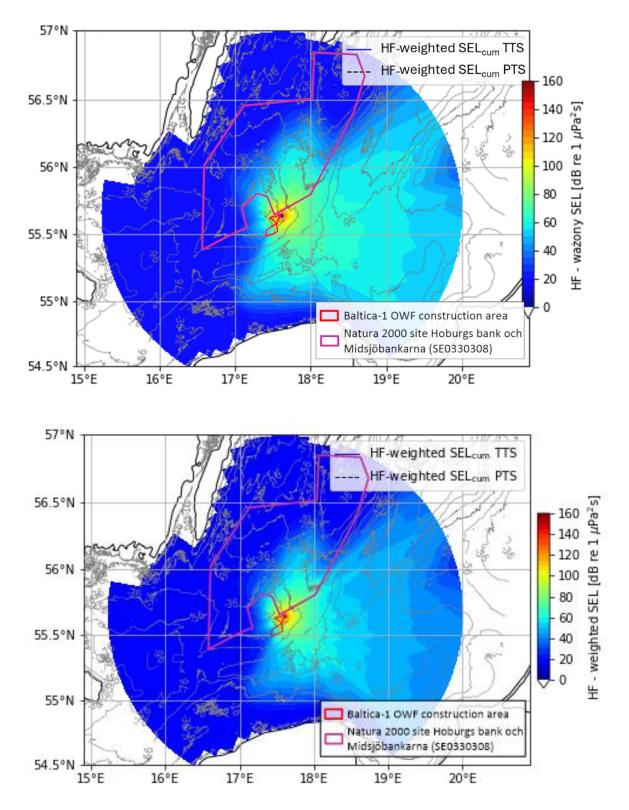


Figure 4.29. The map of HF-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

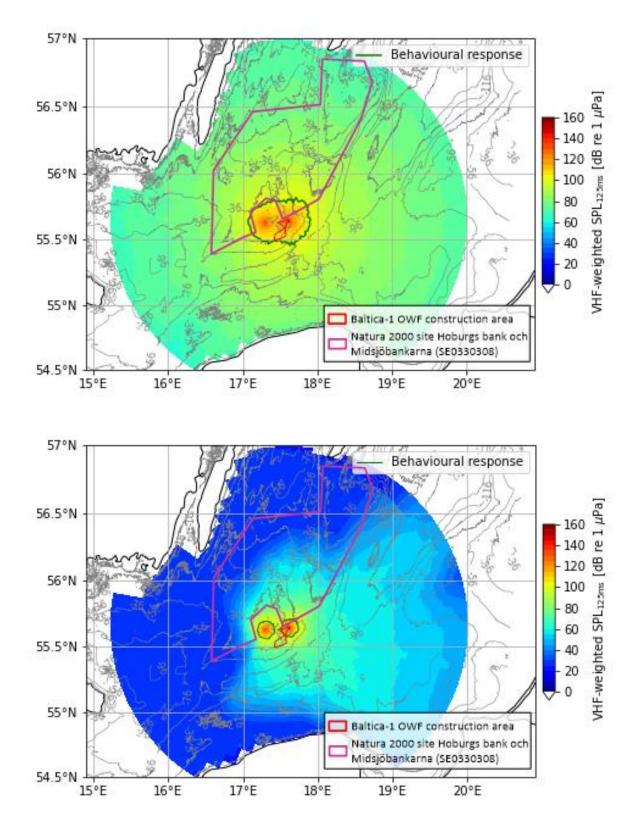


Figure 4.30. The map of VHF-weighted SPL_{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

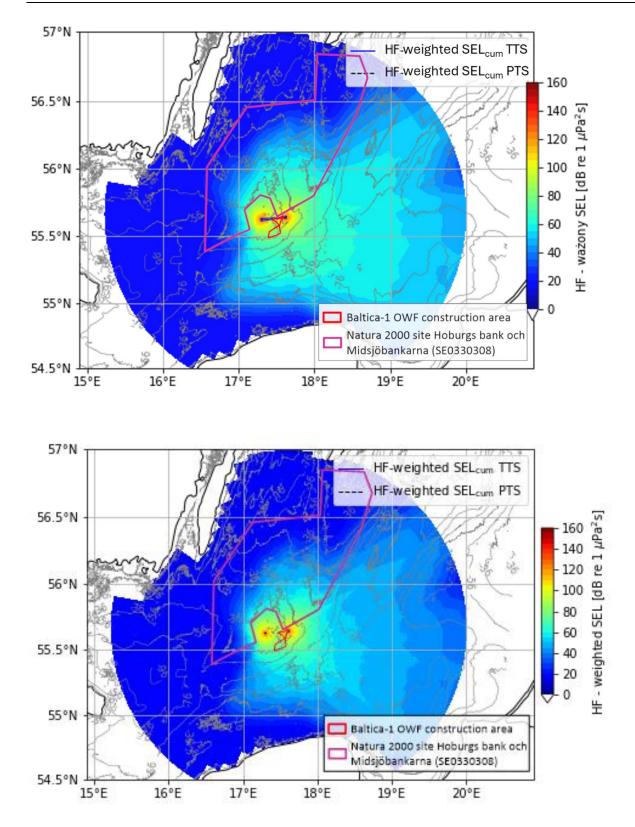


Figure 4.31. The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

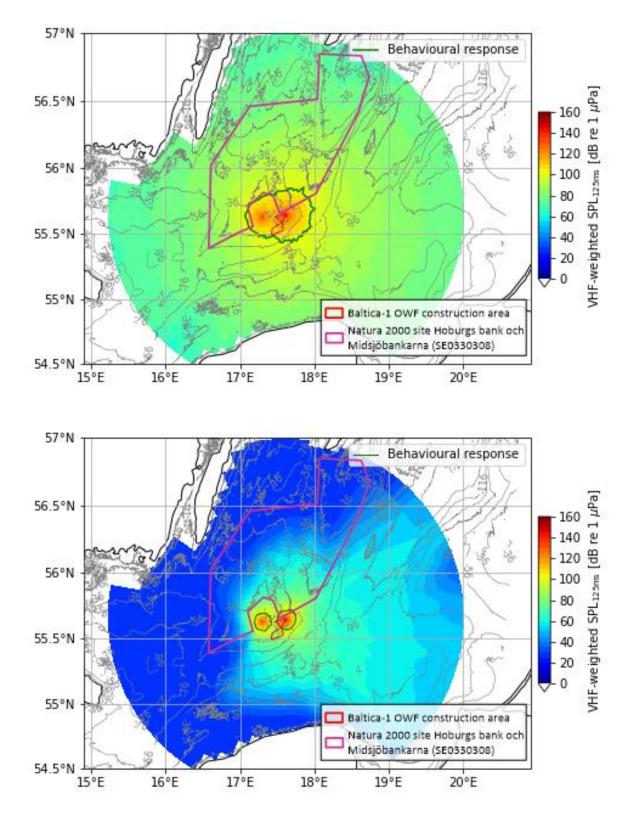


Figure 4.32. The map of VHF-weighted SPL_{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

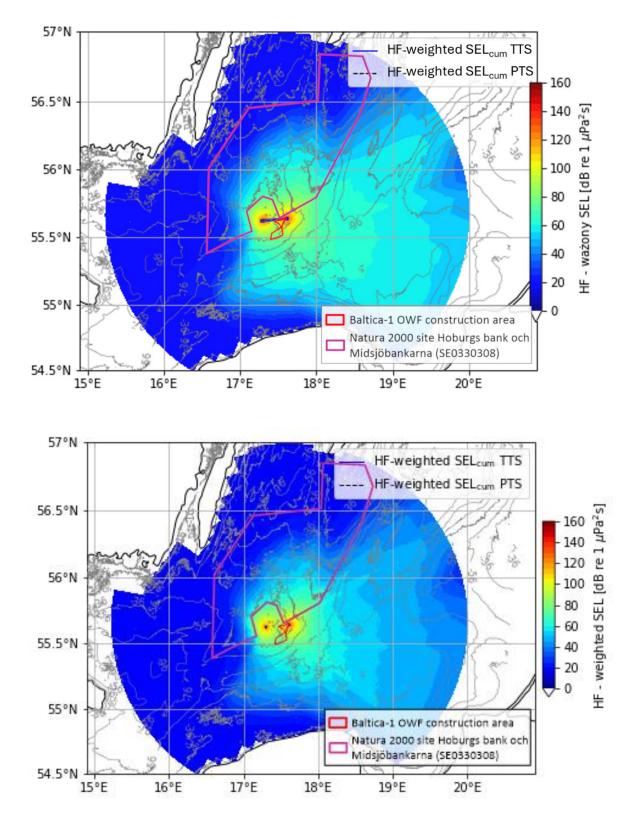


Figure 4.33. The map of HF-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

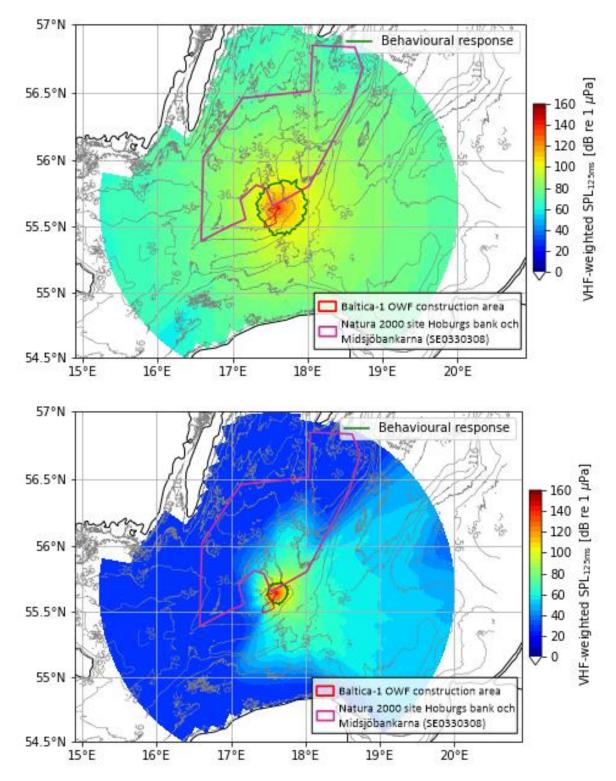


Figure 4.34. The map of VHF-weighted SPL_{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

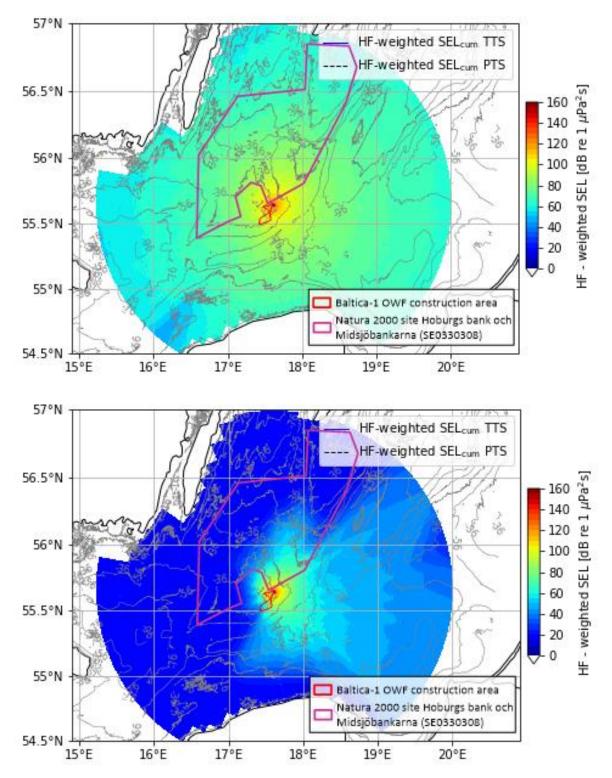


Figure 4.35. The map of HF-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

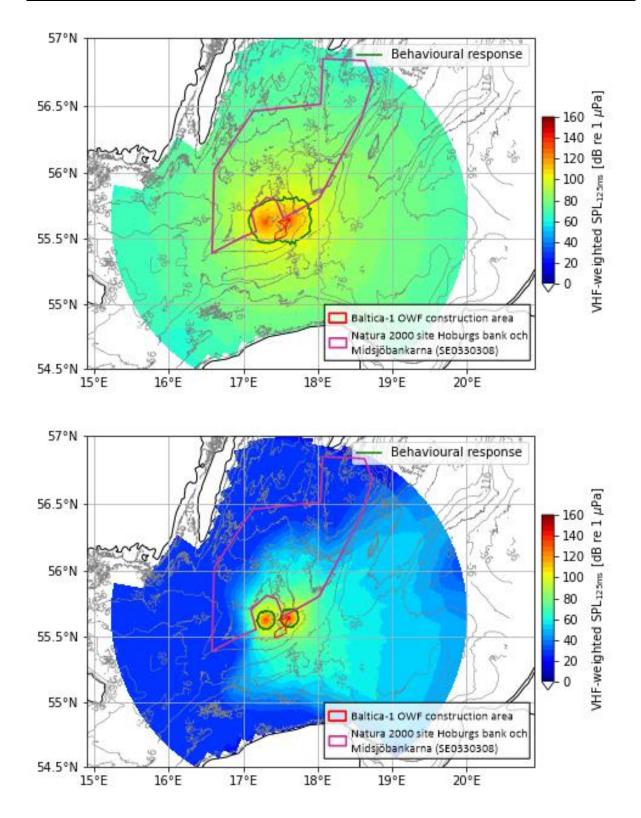


Figure 4.36. The map of VHF-weighted SPL_{125ms} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

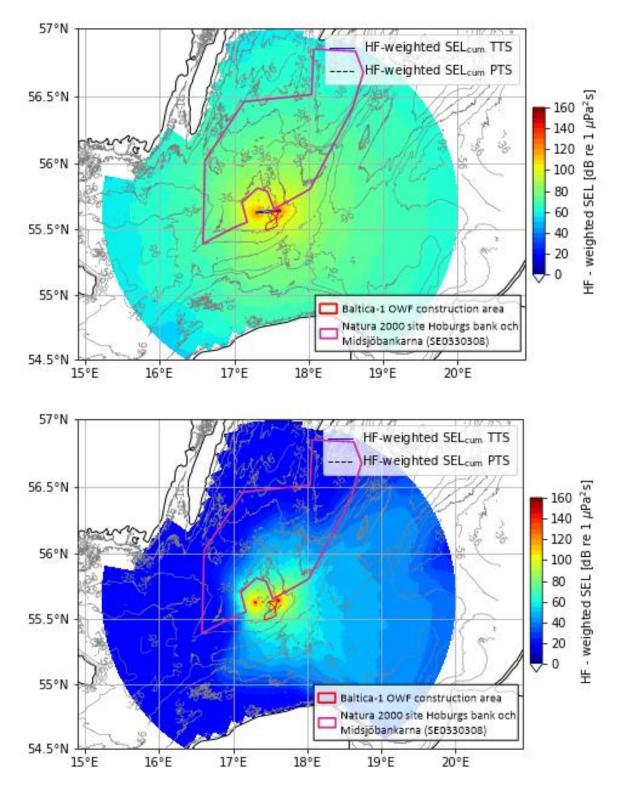


Figure 4.37. The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

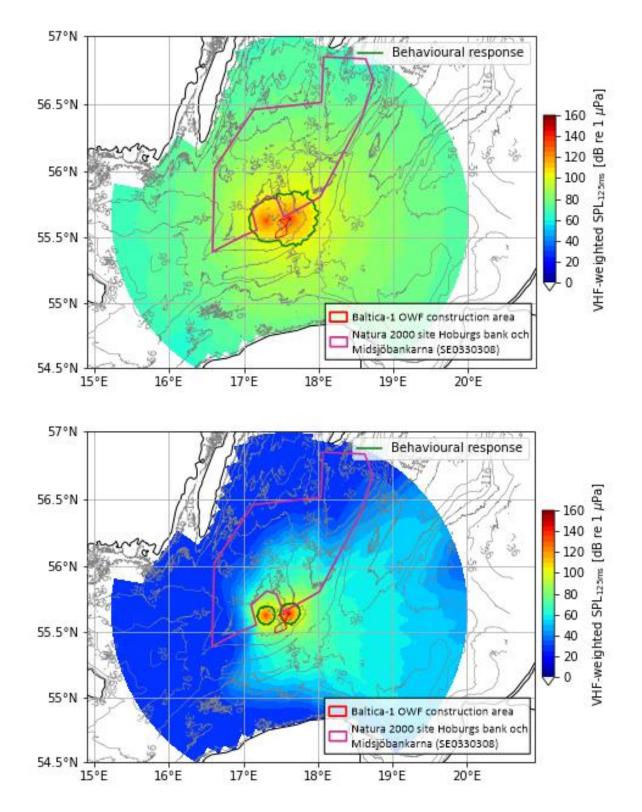


Figure 4.38. The map of VHF-weighted SPL_{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

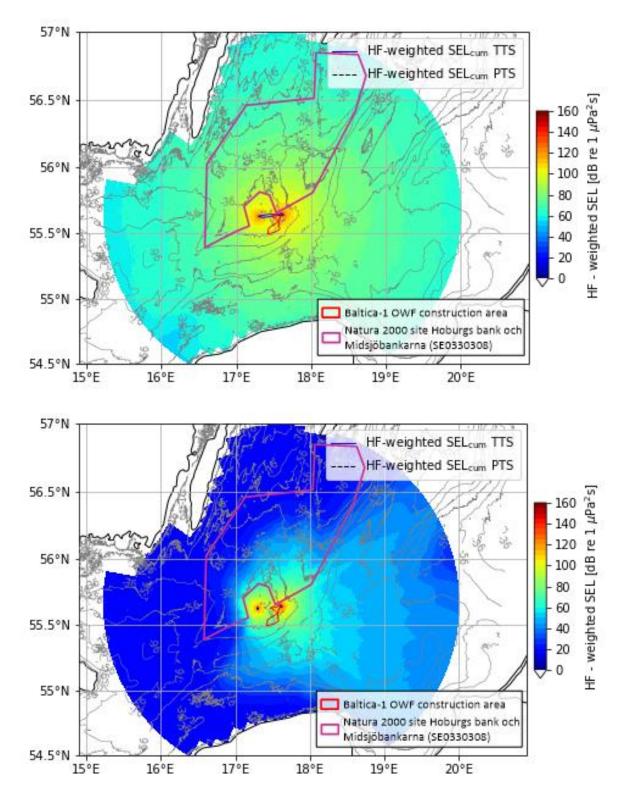


Figure 4.39. The map of HF-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

4.2.2 Grey and harbour seal

Similarly to the results obtained for the harbour porpoise, the impact areas for seals increased with the number of piling sources, reaching the highest values for four locations. The smallest areas of impact were obtained for the scenario with the IQIP + DBBC reduction system applied. The impact areas and noise propagation maps are presented in the table below [Table 4.5] and the following figures [Figure 4.40–Figure 4.57].

Table 4.5.The ranges of distance to the threshold values for the grey and harbour seal in the case of simultaneous piling at several locations within and beyond the Baltica-
1 OWF area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the use of the BBC, HSD + DBBC, and IQIP + DBBC mitigation
systems)

		Impact area [km²]								
Season	Mitigation type	Effect	1 source	2 sources – < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources	
		Behavioural response	241	429	566	482	756	807	1048	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	BBC	TTS (cumulative effect)	7.3	536	679	14.6	966	686	973	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	HSD + DBBC	Behavioural response	31.3	61.9	64.0	62.6	126	95.3	157	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09	
Winter		TTS (cumulative effect)	0.03	3.7	2.8	0.06	35.4	2.8	35.4	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.09	
		Behavioural response	9.6	22.5	17.4	19.2	30.7	27.0	40.3	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	IQIP + DBBC	TTS (cumulative effect)	0.03	15.6	11.9	0.06	16.5	11.9	16.6	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		Behavioural response	132	210	264	264	342	396	528	
C		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
Summer	BBC	TTS (cumulative effect)	0.6	193	365	1.2	482	366	483	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

	Mitigation type	Impact area [km²]								
Season		Effect	1 source	2 sources – < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	HSD + DBBC	Behavioural response	23.1	45.1	42.9	46.2	85.8	66.0	109	
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		TTS (cumulative effect)	0.03	0.1	0.06	0.06	0.2	0.09	0.2	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
	IQIP + DBBC	Behavioural response	7.3	17.4	12.8	14.6	32.0	20.1	39.3	
		TTS (single blow)	0.03	0.03	0.06	0.06	3.9	0.09	3.9	
		TTS (cumulative effect)	0.03	3.9	2.3	0.06	0.06	2.3	2.4	
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1	

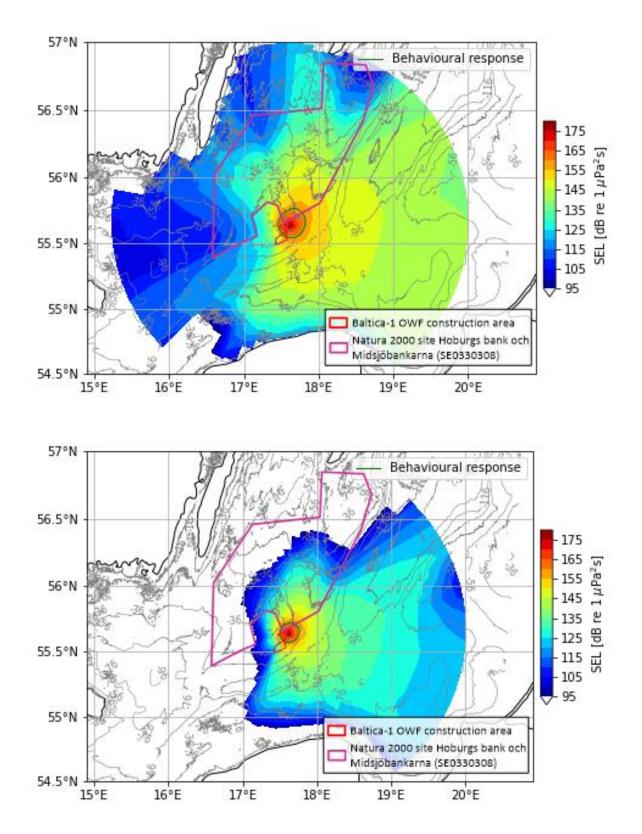


Figure 4.40.The map of unweighted SEL above the acoustic background for piling sources located at a small
distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey
seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

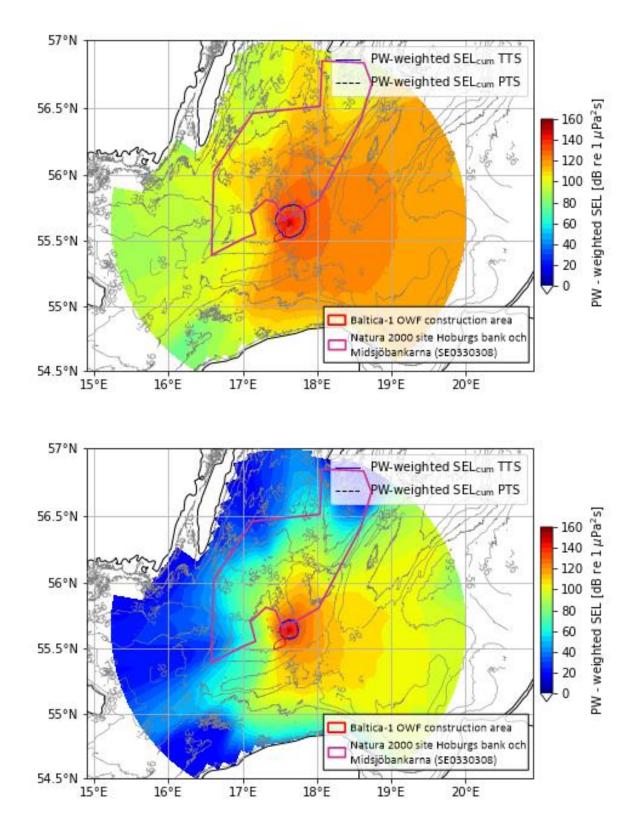
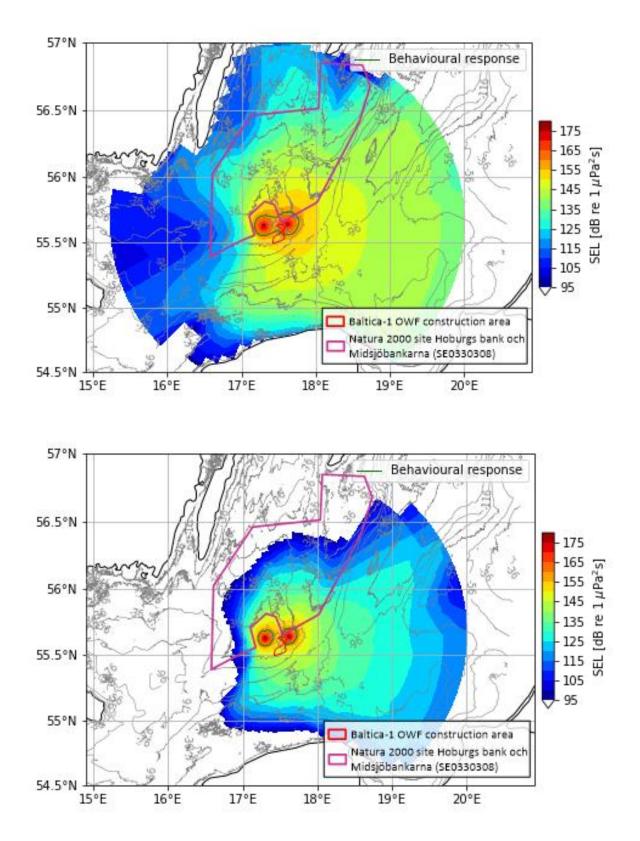



Figure 4.41. The map of PW-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

Figure 4.42. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact for the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

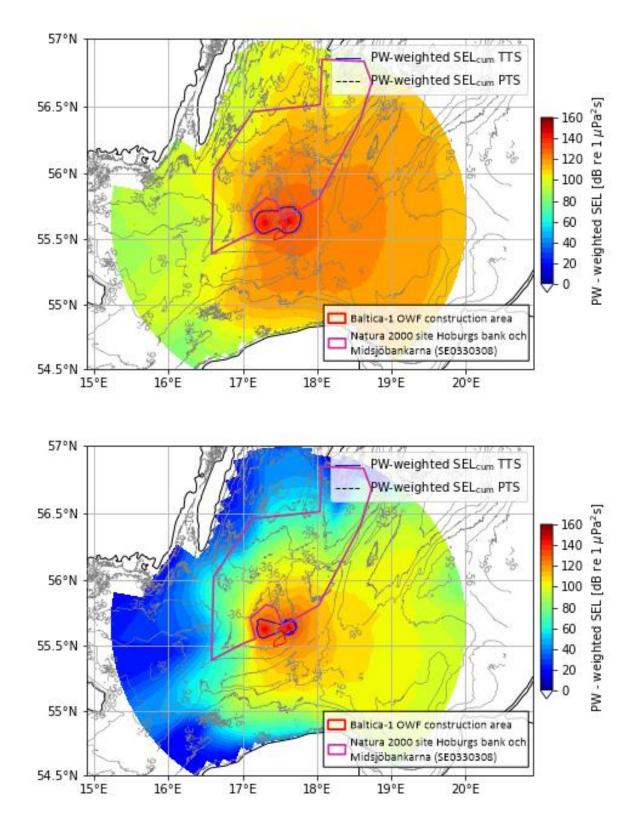


Figure 4.43. The map of PW-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

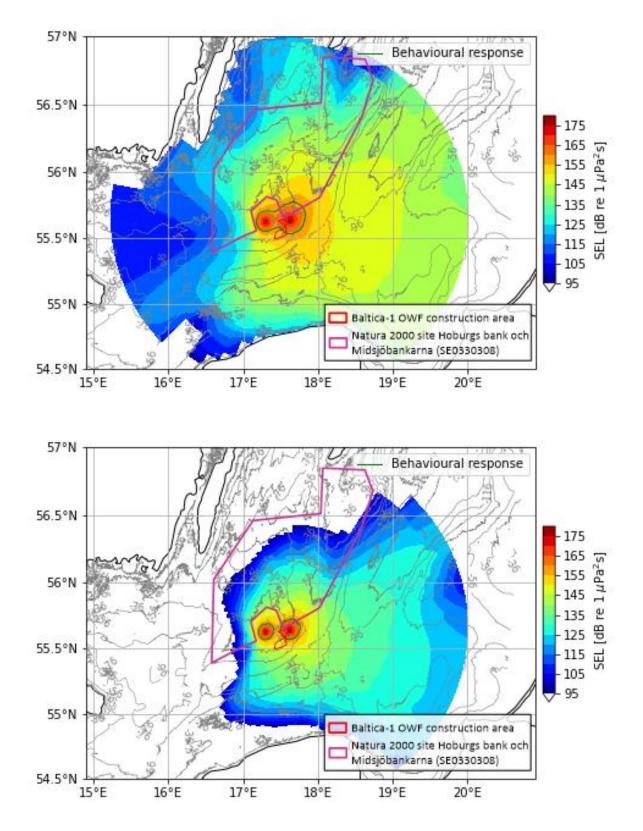


Figure 4.44. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

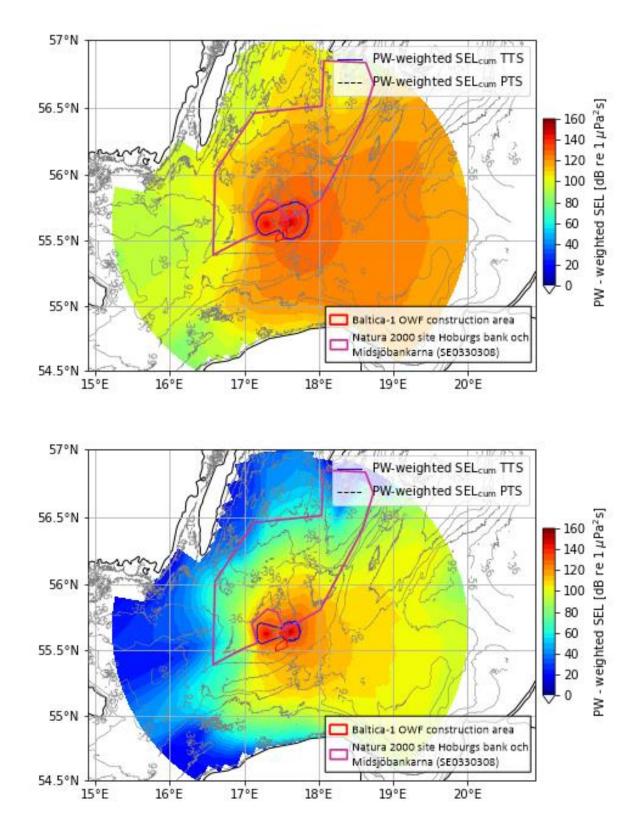


Figure 4.45. The map of PW-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied, in the winter (top) and summer (bottom)

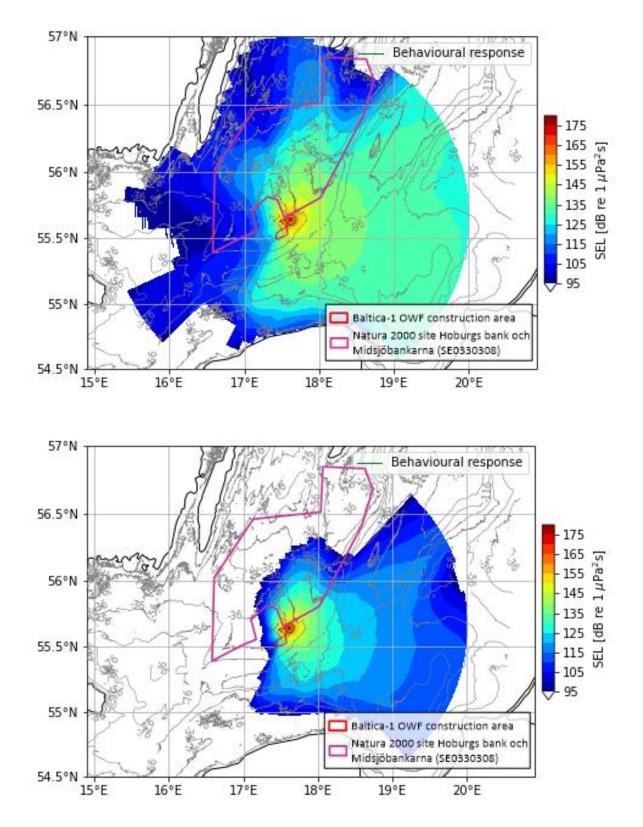


Figure 4.46. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

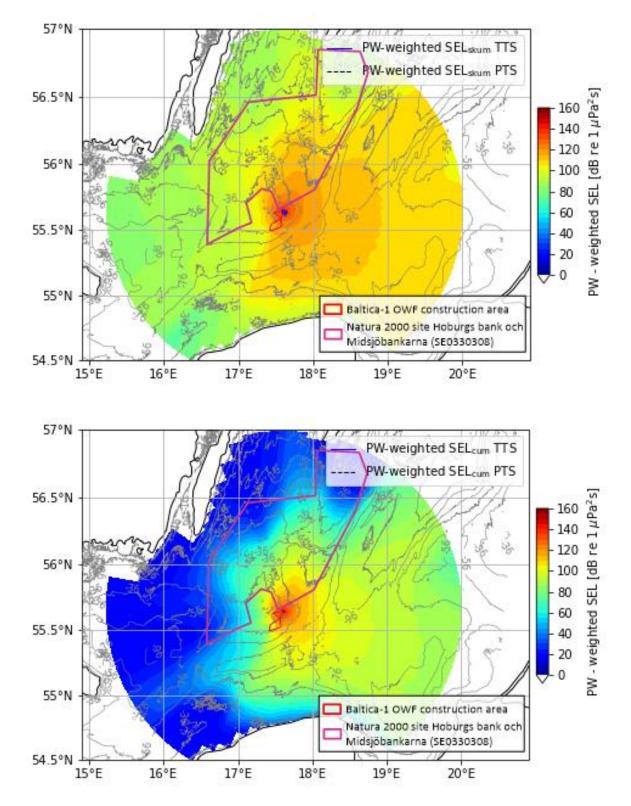


Figure 4.47. The map of PW-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

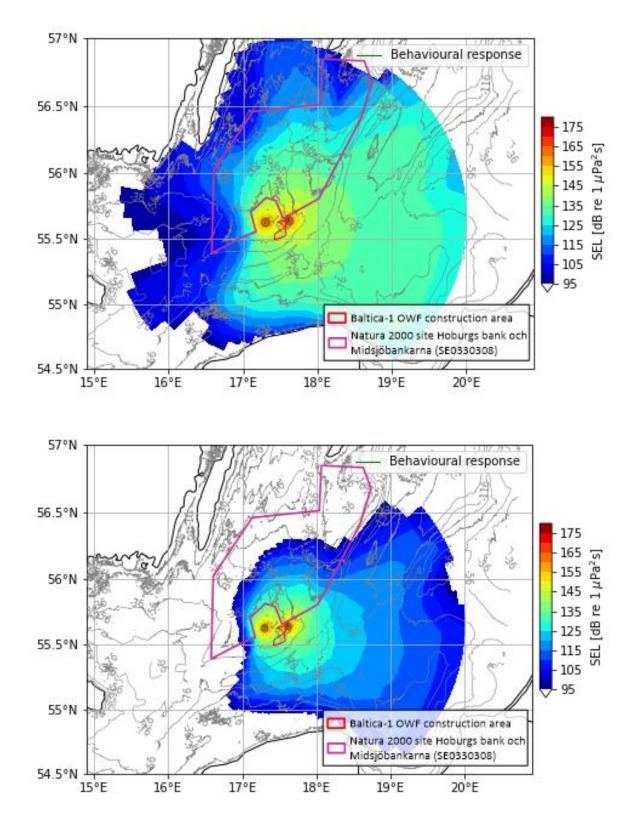


Figure 4.48. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

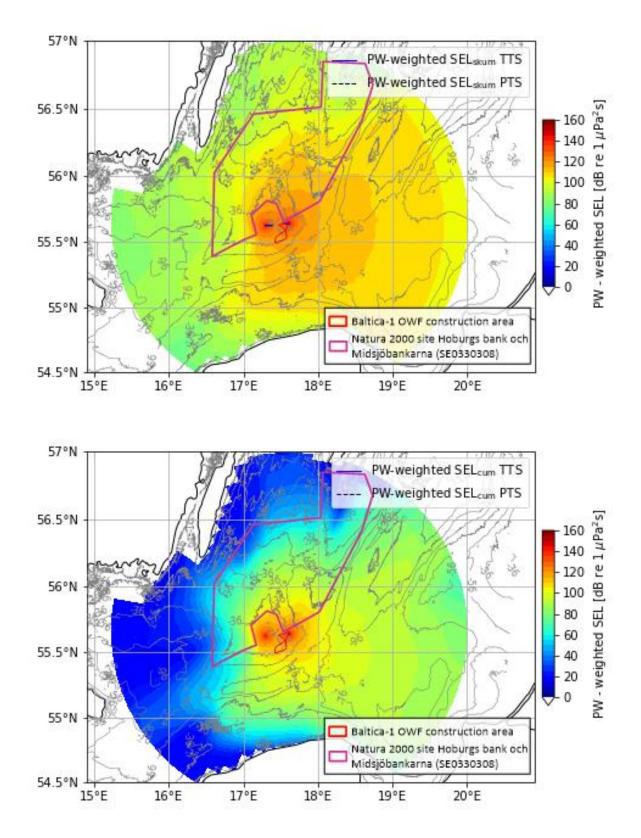


Figure 4.49. The map of PW-weighted SEL_{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with the HSD+ DBBC system applied, in the winter (top) and summer (bottom)

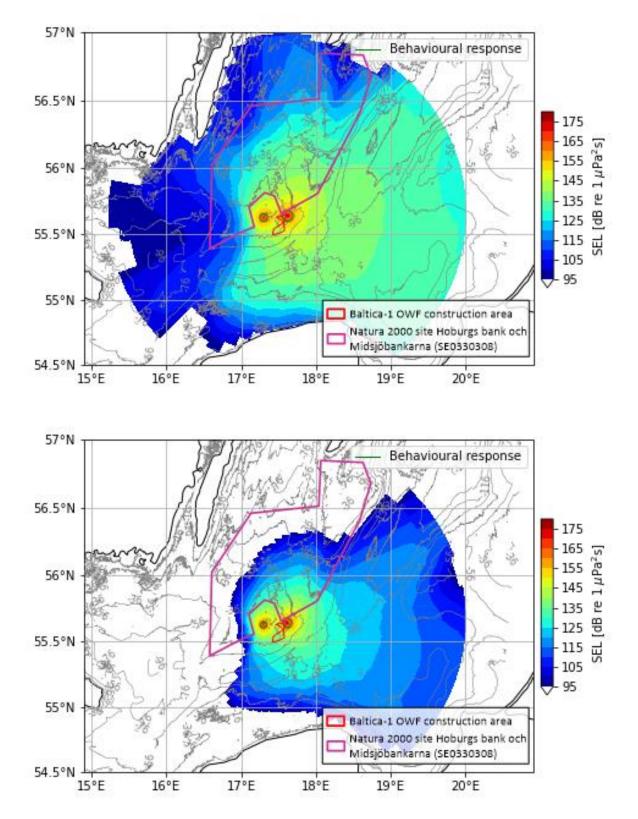


Figure 4.50. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

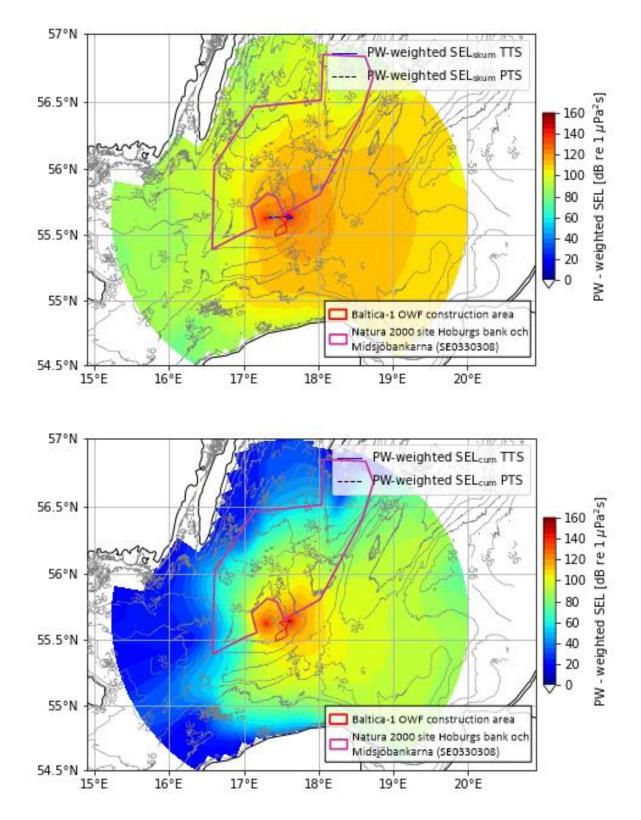


Figure 4.51. The map of PW-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

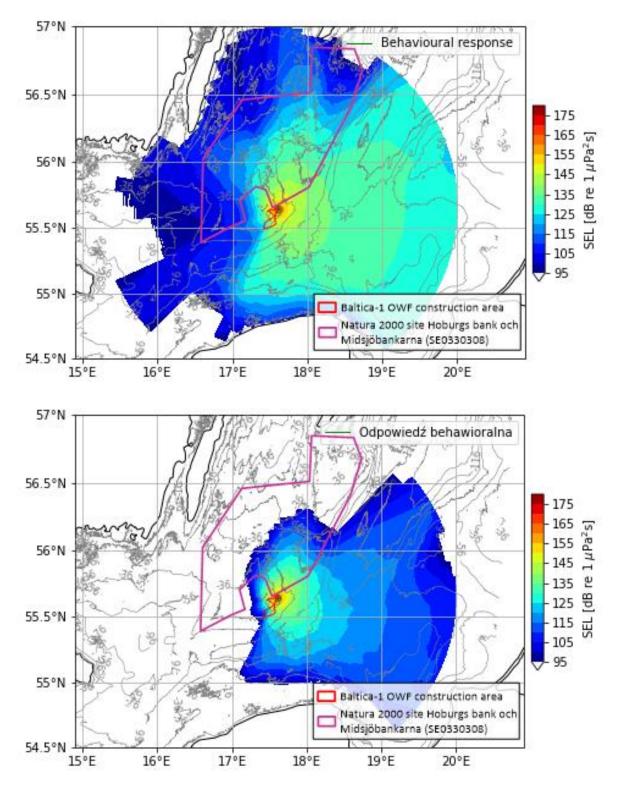


Figure 4.52. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

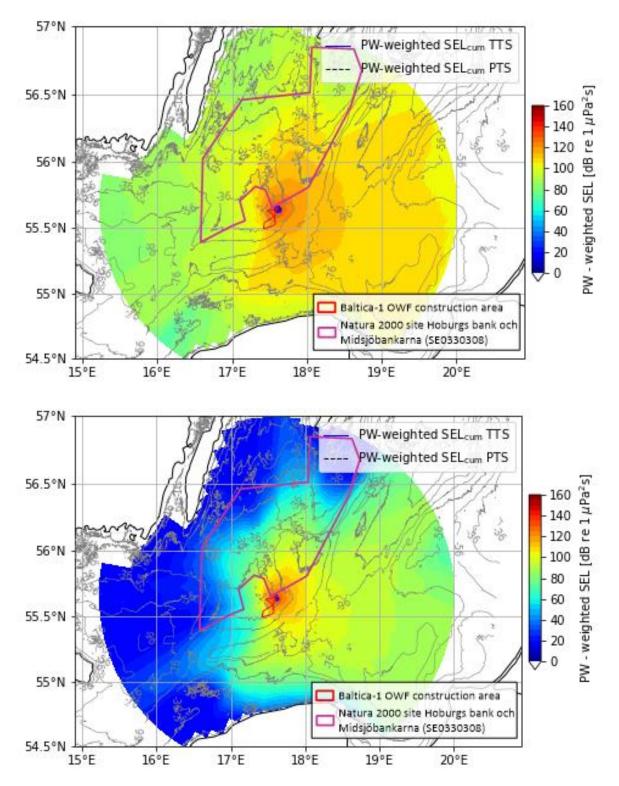


Figure 4.53. The map of PW-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

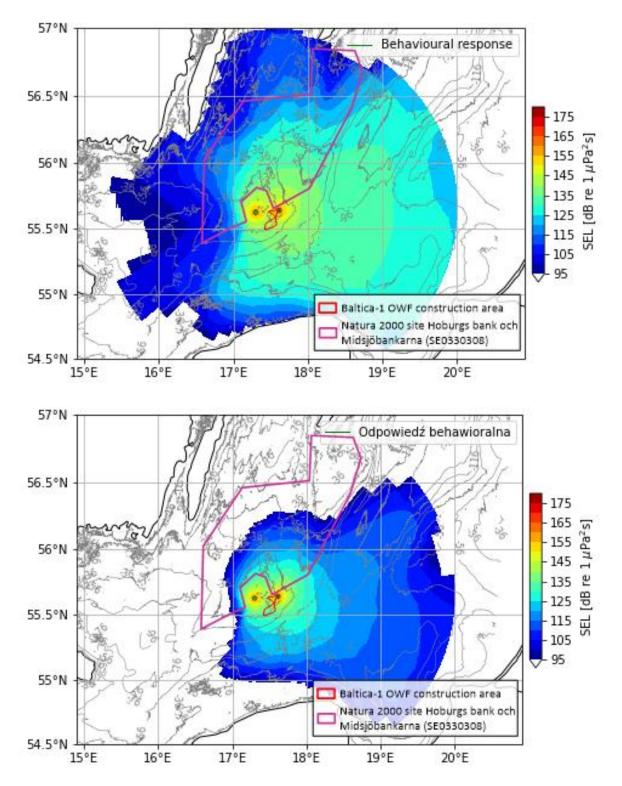


Figure 4.54. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

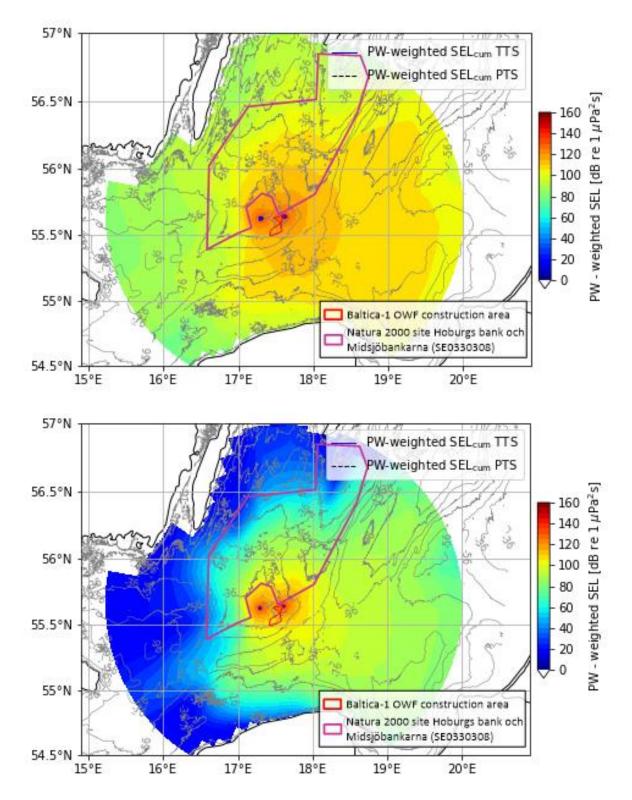


Figure 4.55. The map of PW-weighted SEL_{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the grey seal and harbour seal with the IQIP+ DBBC system applied, in the winter (top) and summer (bottom)

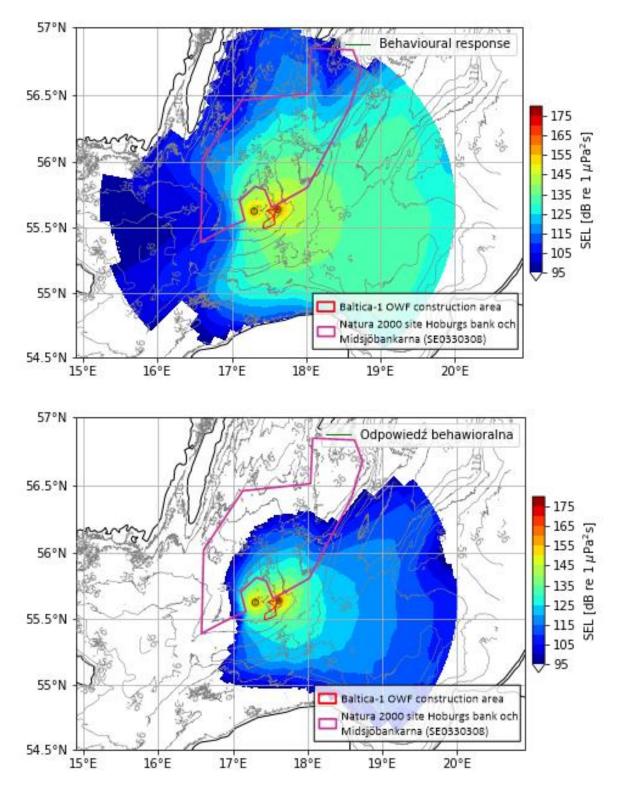


Figure 4.56. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

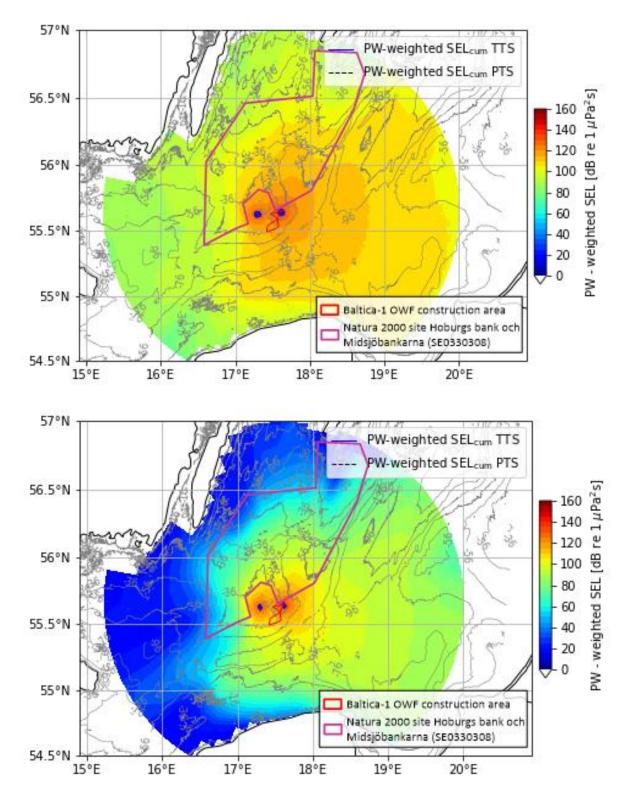


Figure 4.57. The map of PW-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

4.2.3 Fish with swim bladders

Similarly to the results obtained for the harbour porpoise and seals, the impact areas for fish with swim bladders increased with the number of piling sources, reaching the highest values in the case of four

locations. The smallest impact areas were obtained for the scenario with the use of the IQIP + DBBC mitigation system. Impact areas and noise propagation maps are presented in the figure below [Table 4.6] and the following figures [Figure 4.58–Figure 4.66].

Table 4.6.The ranges of distances to threshold values for fish with swim bladders in the case of simultaneous piling in several locations within and outside the Baltica-1
area (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the use of the BBC, HSD + DBBC, and IQIP + DBBC mitigation systems)

	Mitigation type	Impact area [km ²]							
Season		Effect	1 source	2 sources – < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources
		Behavioural response	25820	28199	31123	51640	31989	56943	82763
		TTS (single blow)	0.03	0.1	0.06	0.06	0.1	0.09	0.1
	BBC	TTS (cumulative effect)	2204	4626	5034	4408	7739	7238	9943
	BBC	Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1
		Reversible hearing loss (cumulative effect)	62.0	126	124	124	188	186	250
	HSD + DBBC	Behavioural response	2844	6245	6590	5688	10123	9434	12967
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1
Winter		TTS (cumulative effect)	288	459	648	648	849	936	1224
white		Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1
		Reversible hearing loss (cumulative effect)	5.0	13.4	10.0	10.0	26.8	15.0	31.8
		Behavioural response	1772	3533	3939	3544	6222	5711	7994
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1
	IQIP + DBBC	TTS (cumulative effect)	158	287	393	316	525	551	709
	IQIP + DBBC	Reversible hearing loss (single blow)	0.03	0.03	2.3	0.06	0.06	2.3	2.3
		Reversible hearing loss (cumulative effect)	1.1	3.1	0.06	2.2	6.3	1.2	7.4
		Behavioural response	2676	3981	4654	5352	5820	7330	10006
Summer	BBC	TTS (single blow)	0.03	0.1	0.03	0.06	0.1	0.06	0.1
		TTS (cumulative effect)	625	917	1228	1250	1509	1853	2478

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

	Mitigation type	Impact area [km ²]										
Season		Effect	1 source	2 sources – < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources			
		Reversible hearing loss (single blow)	0.03	0.03	0.03	0.06	0.06	0.09	0.09			
		Reversible hearing loss (cumulative effect)	43.4	76.0	86.8	86.8	119	130	173			
		Behavioural response	801	1136	1528	1602	1842	2329	3130			
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
	HSD + DBBC	TTS (cumulative effect)	169	257	391	338	477	560	729			
	HSD + DBBC	Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
		Reversible hearing loss (cumulative effect)	4.5	11.0	9.0	9.0	15.5	13.5	20.0			
		Behavioural response	551	803	1102	1102	1354	1653	2204			
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
		TTS (cumulative effect)	95	156	257	190	313	352	447			
	IQIP + DBBC	Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
		Reversible hearing loss (cumulative effect)	0.8	2.7	1.6	1.6	2.7	2.4	3.5			

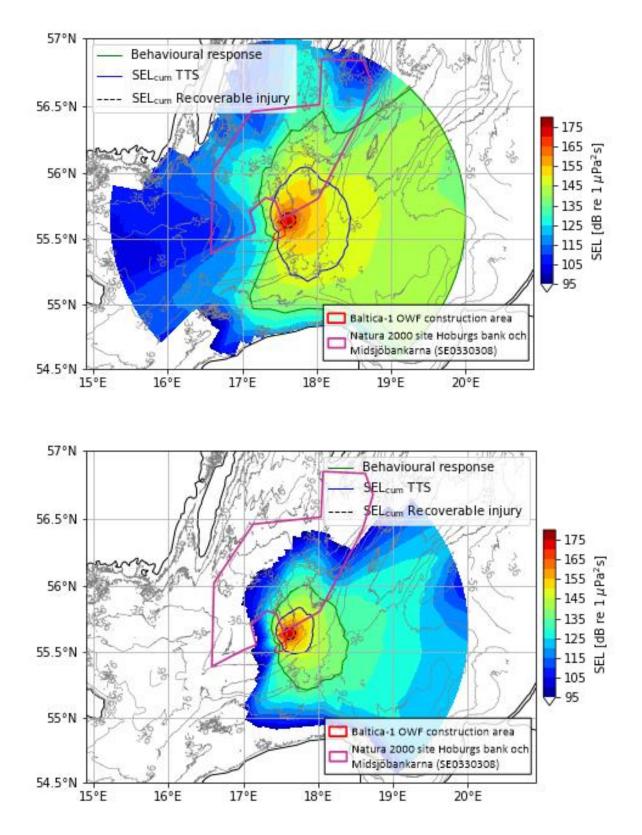


Figure 4.58. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)

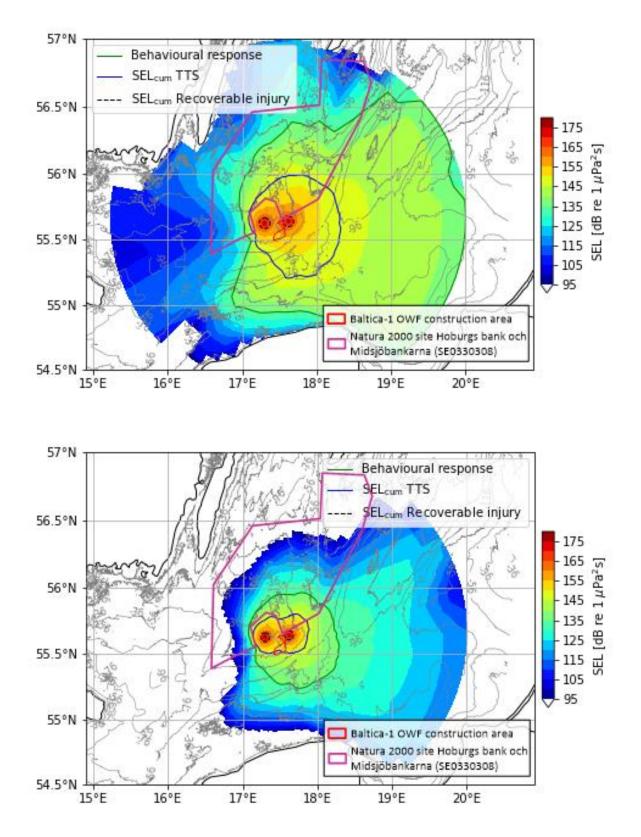


Figure 4.59. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with a BBC applied, in the winter (top) and summer (bottom)

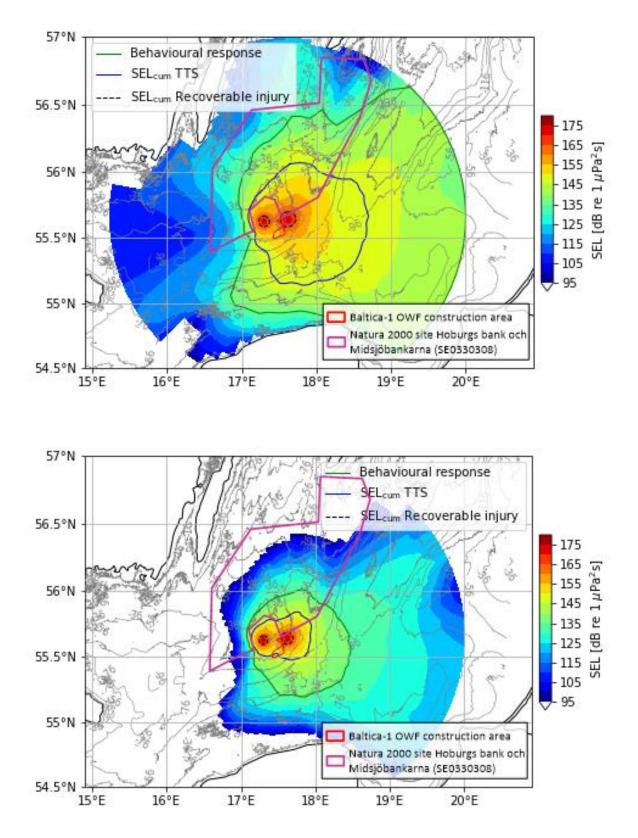


Figure 4.60. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fishes with swim bladders with a BBC applied, in the winter (top) and summer (bottom) seasons

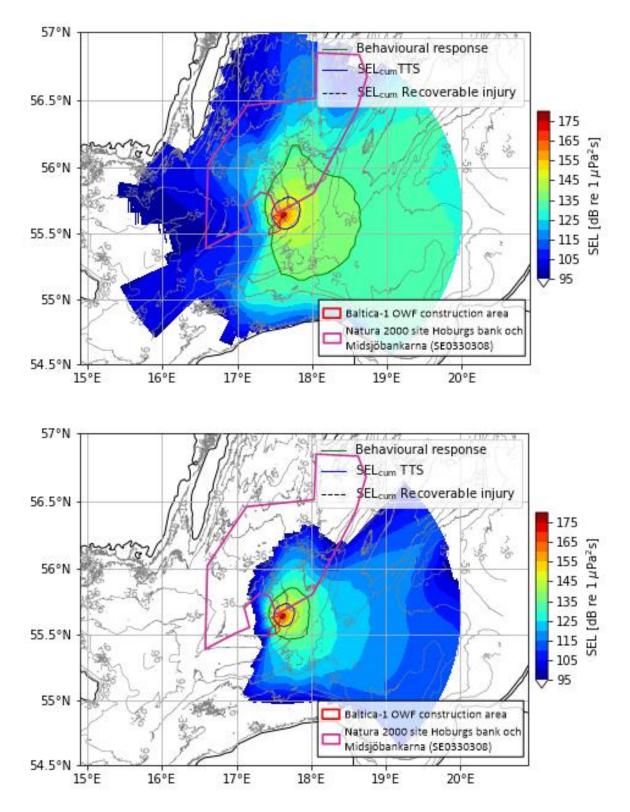


Figure 4.61. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

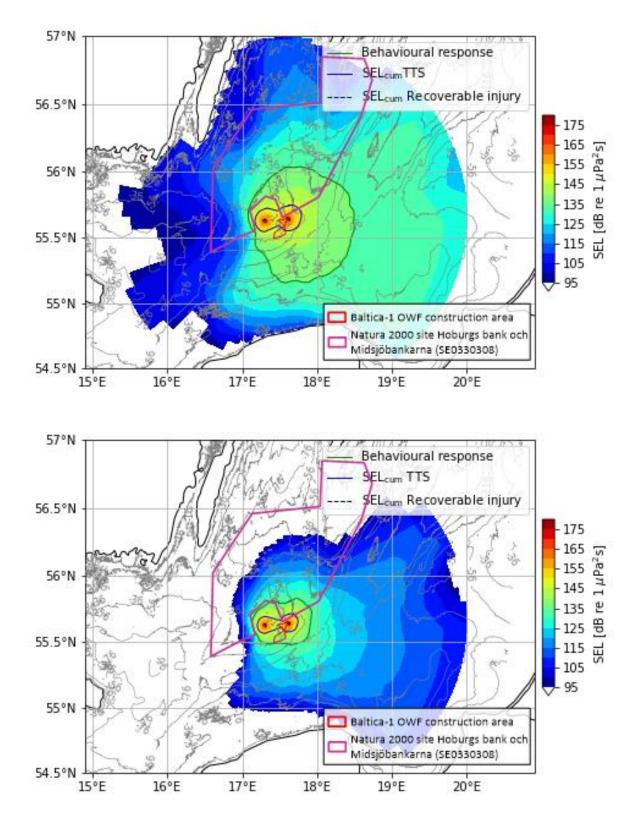


Figure 4.62. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom)

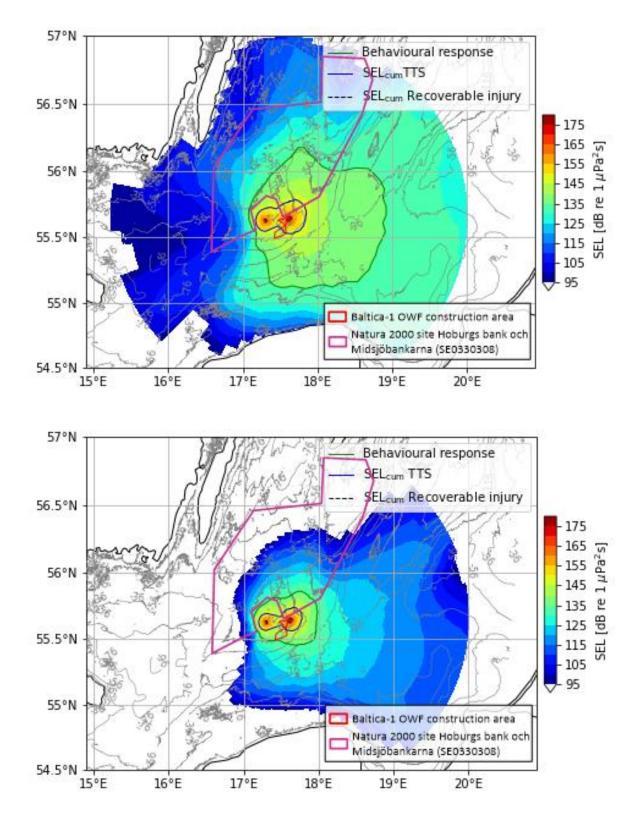


Figure 4.63. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied, in the winter (top) and summer (bottom) seasons

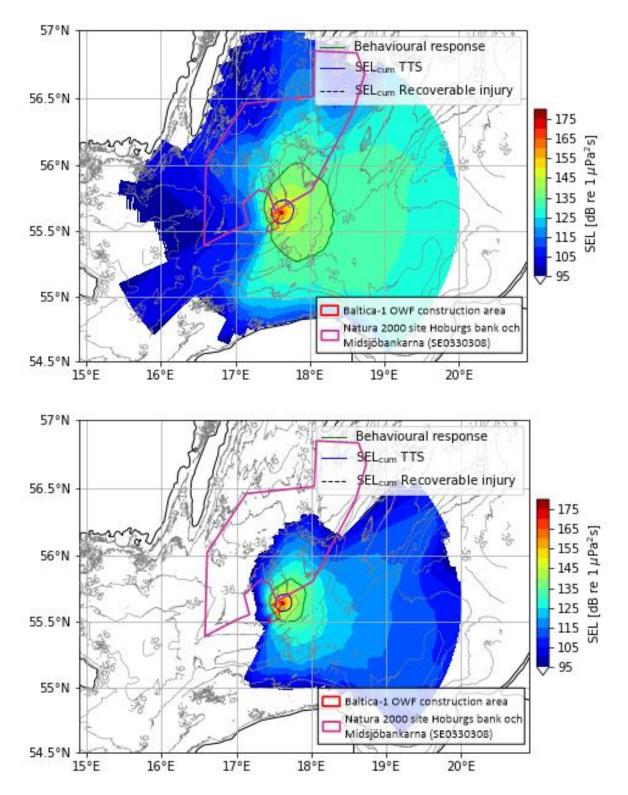


Figure 4.64. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

Figure 4.65. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom)

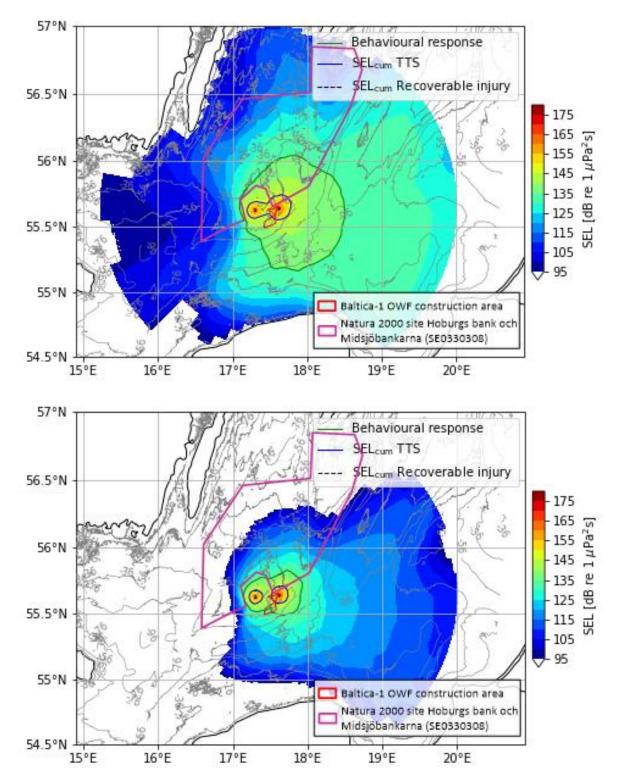


Figure 4.66. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with the IQIP + DBBC system applied, in the winter (top) and summer (bottom) seasons

4.3 Noise levels at the boundary of the Natura 2000 area

Presented below are levels of noise heard at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna in the winter and summer seasons. Analyses were conducted for the harbour porpoise, as it is subject to protection in the above-mentioned area, and additionally, the threshold values for this species are the lowest among the analysed mammals.

4.3.1 Piling in a single location

The tables below present the differences between the calculated sound values at the boundary of the Natura 2000 site and the threshold values for scenarios without any mitigation measures applied [Table 4.7] and with the mitigation systems taken into account [Table 4.8]. The corresponding graphs for the cumulative TTS and PTS are presented in the following figures [Figure 4.67–Figure 4.72].

All graphs present a characteristic logarithmic decline taking into account the oscillation levels. The combination of oscillations of individual 1/3-octave bands, with the simultaneous use of "effective silence", can lead to significant fluctuations in the case of the scenario with mitigation measures included. This is caused by the oscillation of the 1/3-octave band for the unweighted SEL around the value of 124 dB. In the case where the 1/3-octave band has a dominant impact on the HF-weighted SEL, the results show a large variability, as between individual ranges the acoustic energy of the band is included or omitted in the calculation of the cumulative HF-weighted SEL. The effect of local interference can cause the dominant 1/3 octave band to oscillate around the value of 124 dB, which leads to major differences between the cumulative HF-weighted SEL in the scenario with mitigation measures.

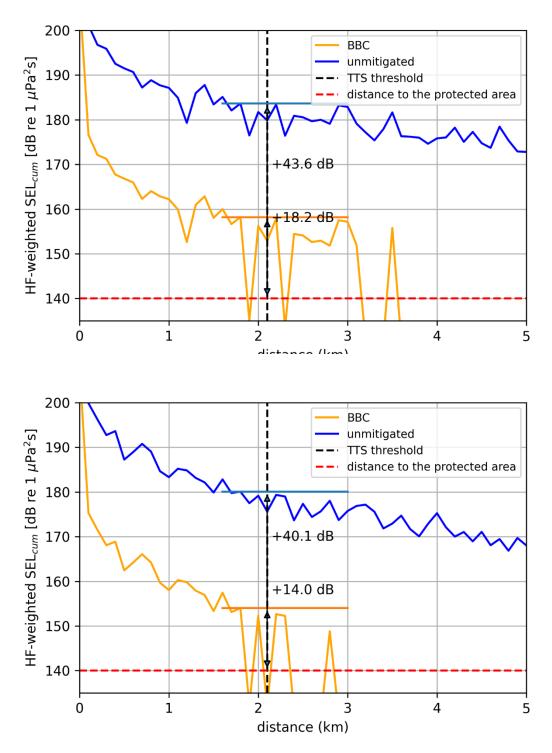
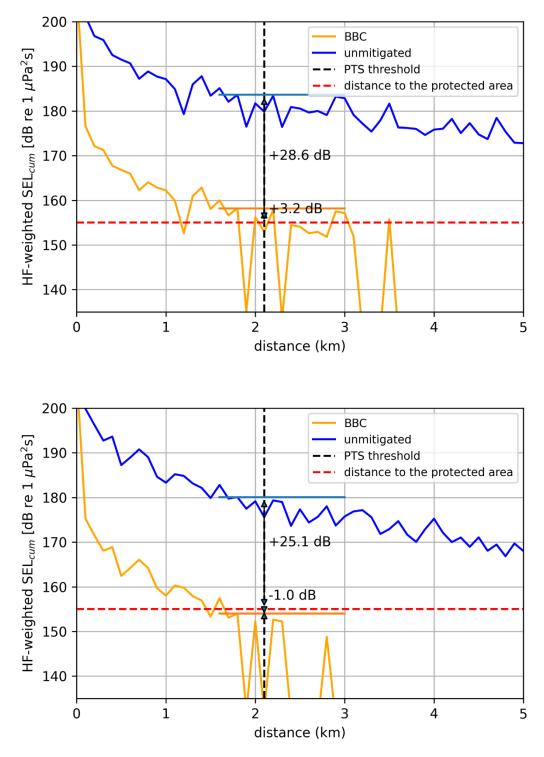

Based on the presented results, it is shown that in the case of piling at a single location, the cumulative TTS threshold values for harbour porpoise will be exceeded at the boundary of the Swedish Natura 2000 site in both analysed seasons if no mitigation measures are used and after the application of a single bubble curtain. Only the application of the HSD + DBBC or IQIP + DBBC system showed a decrease in PTS at the boundary of the Natura 2000 area to an acceptable level, however, the cumulative TTS, even after the application of the above-mentioned noise reduction system, remained at a prominent level in the winter season.

Table 4.7.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures
applied

		SEL threshold value at	Without mitigating measures				
Season	Effect	the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL value at the boundary of the Natura 2000 site [dB re 1 μ Pa ² s]	The difference in the modelled level of HF weighted SEL and the threshold value [dB]			
Winter	TTS (cumulative effect)	140	183.6	+43.6			
winter	PTS (cumulative effect)	155	183.6	+28.6			
Summor	TTS (cumulative effect)	140	180.1	+40.1			
Summer	PTS (cumulative effect)	155	100.1	+25.1			


Table 4.8.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise
with mitigation measures applied

Season	Effect	The threshold SEL value at the boundary of the Natura 2000 site [dB re 1	The modelled H boundary of the μPa ² s]	-		The difference in the modelled level of HF- weighted SEL and the threshold value [dB]		
		μPa ² s]	BBC	HSD + DBBC	IQIP + DBBC	BBC	HSD + DBBC	IQIP + DBBC
Winter	TTS (cumulative effect)	140	158.2	150.9	153.4	+18.2	+10.9	+13.4
winter	PTS (cumulative effect)	155	158.2			+3.2	-4.1	-1.6
Summer	TTS (cumulative effect)	140	154.0	122.7	122.1	+14.0	-17.3	-17.9
	PTS (cumulative effect)	155	134.0			-1.0	-32.3	-32.9

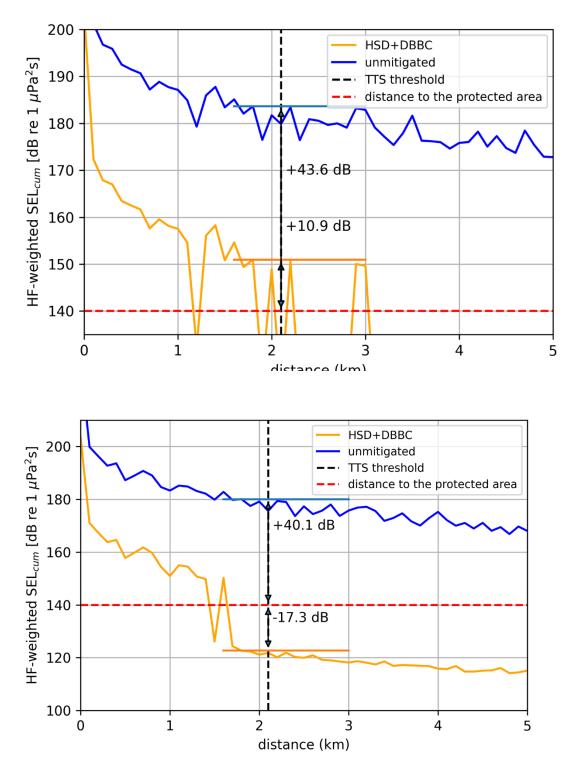

4.3.1.1 The distances to threshold values in the scenarios with mitigation (BBC) applied

Figure 4.67. The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

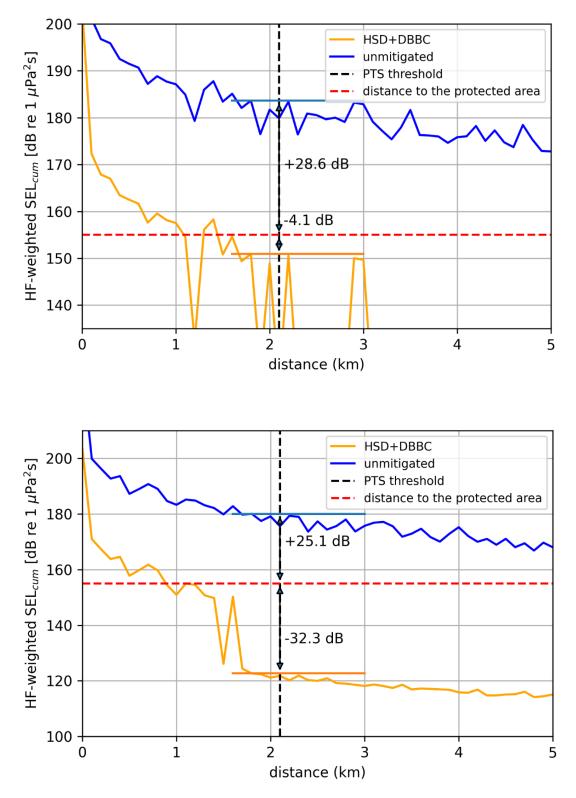


Figure 4.68. The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.69. The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.70. The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

4.3.1.3 The distances to threshold values for the scenario with mitigation measures (IQIP + DBBC) applied

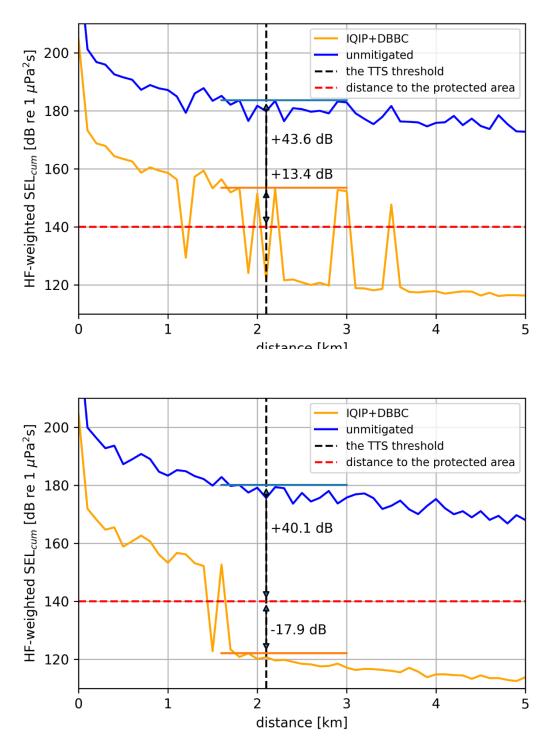


Figure 4.71. The propagation of piling noise within the Baltica-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

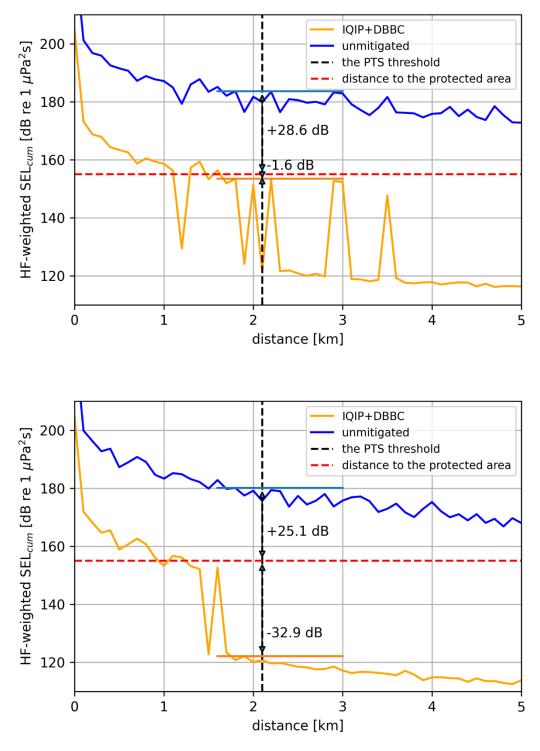


Figure 4.72. The propagation of piling noise within the Baltica-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

4.3.2 Piling in several locations

The differences in noise levels between the modelled SEL values at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna and the threshold values were calculated also for simultaneous

piling works in several locations. The results for the different numbers of piling locations are presented in the table below [Table 4.9] for the scenario without mitigation measures applied and in the following table [Table 4.10] for the scenario with mitigation. The corresponding graphs for the TTS and PTS are presented in the following figures [Figure 4.73–Figure 4.90].

Based on the obtained results, it was concluded that in the case of piling works in several locations, the TTS threshold values at the boundary of the Natura 2000 site in question will be exceeded. This applies to all scenarios analysed. The TTS and PTS thresholds can only be expected not to be exceeded in the case of simultaneous piling at two locations 20 km apart with the HSD + DBBC or IQIP + DBBC system used as a mitigation measure in the summer season.

 Table 4.9.
 The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied

			SEL threshold value at the	Without mitigating measures			
Season	Sound sources	Effect	boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
	2 sources –	TTS (cumulative effect)	140	186.6	+46.6		
Winter	<1 km	PTS (cumulative effect)	155	100.0	+31.6		
	2 sources –	TTS (cumulative effect)	140	183.7	+43.7		
	20 km	PTS (cumulative effect)	155	183.7	+28.7		
	3 sources –	TTS (cumulative effect)	140		+46.7		
	2 <1 km, 1 = 20 km	PTS (cumulative effect)	155	186.7	+31.7		
	2 sources –	TTS (cumulative effect)	140	183.1	+43.1		
	<1 km	PTS (cumulative effect)	155	183.1	+28.1		
	2 sources –	TTS (cumulative effect)	140	100.1	+40.1		
Summer	20 km	PTS (cumulative effect)	155	180.1	+25.1		
	3 sources –	TTS (cumulative effect)	140		+43.1		
	2 <1 km, 1 = 20 km	PTS (cumulative effect)	155	183.1	+28.1		

 Table 4.10.
 The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied

Season	Sound sources	Fffect	The threshold SEL value at the boundary of the Natura 2000 site [dB re 1	The modelled HF-weighted SEL value at the boundary of the Natura 2000 site [dB re 1 μ Pa ² s]			The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
			μPa²s]	BBC	HSD + DBBC	IQIP + DBBC	BBC	HSD + DBBC	IQIP + DBBC
	2 sources – < 1 km	TTS (cumulative effect)	140	161.5	156.6	157.9	+21.5	+16.6	+17.9
Winter		PTS (cumulative effect)	155				+6.5	+1.6	+2.9
	2 sources –	TTS (cumulative effect)	140	158.2	150.9	153.4	+18.2	+10.9	+13.4

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm
Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

Season	Sound sources	Effect	The threshold SEL value at the boundary of the Natura 2000 site [dB re 1		ed HF-weighted S ry of the Natura 2		The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
			μPa²s]	BBC	HSD + DBBC	IQIP + DBBC	BBC	HSD + DBBC	IQIP + DBBC
	20 km	PTS (cumulative effect)	155				+3.2	-4.1	-1.6
	3 sources – 2 < 1km, 1 = 20 km	TTS (cumulative effect)	140	161.5	156.6	157.9	+21.5	+16.6	+17.9
		PTS (cumulative effect)	155				+6.5	+1.6	+2.9
	2 sources – < 1 km	TTS (cumulative effect)	140	157.8	150.6	153.0	+17.8	+10.6	+13.0
		PTS (cumulative effect)	155				+2.8	-4.4	-2.0
	2 sources –	TTS (cumulative effect)	140	454.0	122.7	122.1	+14.0	-17.3	-17.9
Summer	20 km	PTS (cumulative effect)	155	154.0			-1.0	-32.3	-32.9
	3 sources –	TTS (cumulative effect)	140				+17.8	+10.6	+13.0
	2 < 1km, 1 = 20 km	PTS (cumulative effect)	155	157.8	150.6	153.0	+2.8	-4.4	-2.0

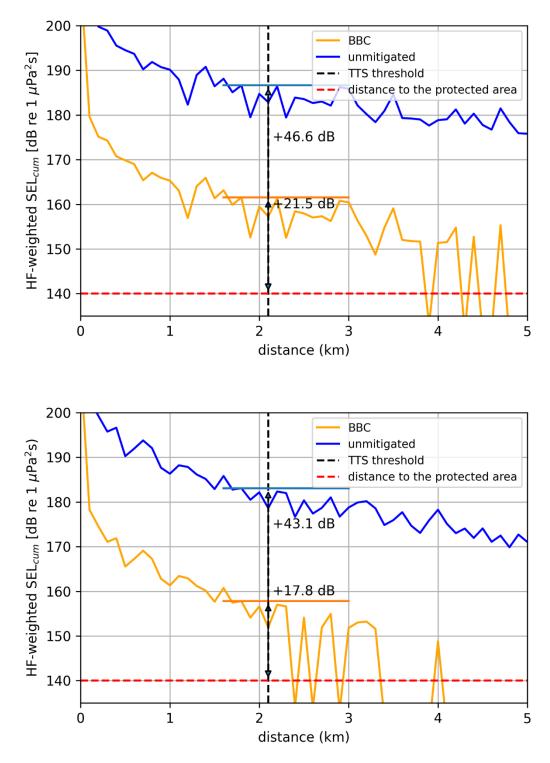


Figure 4.73. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

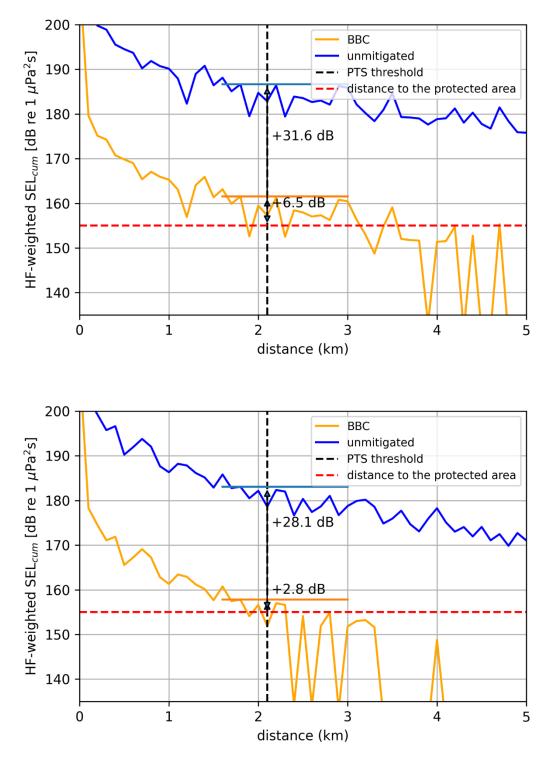
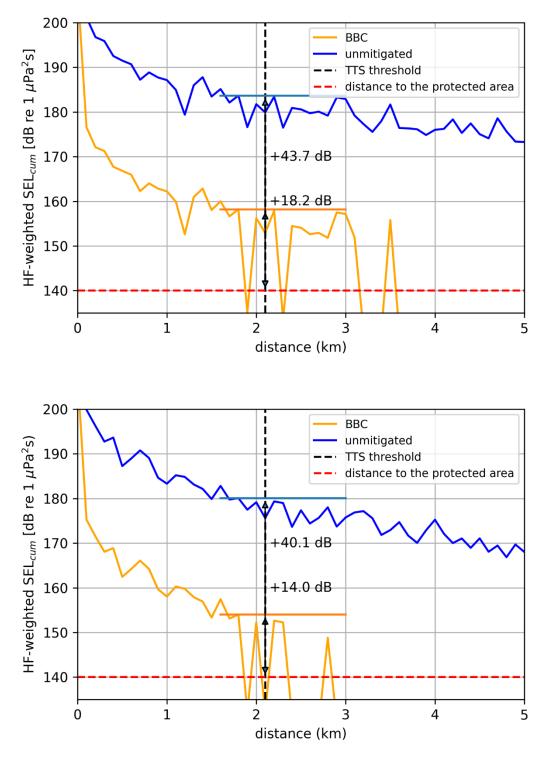
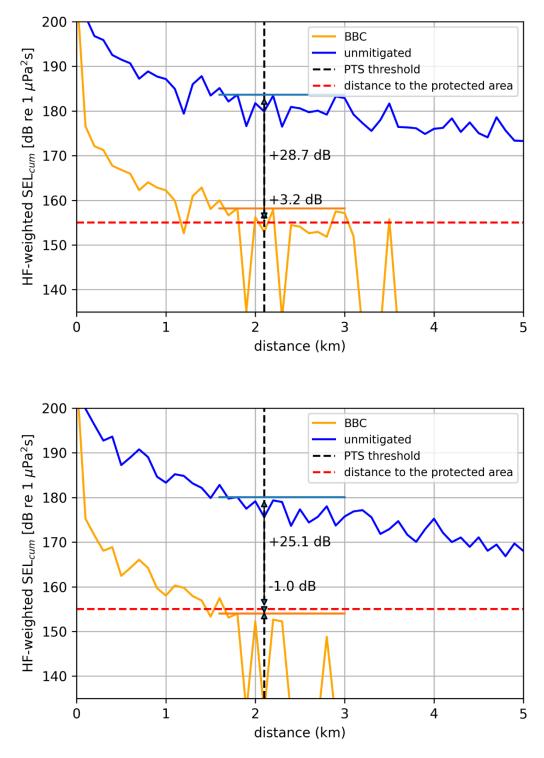




Figure 4.74. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.75. Noise propagation during simultaneous piling in two locations 20 km apart from each other in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.76. Noise propagation during simultaneous piling in two locations 20 km apart from each other in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

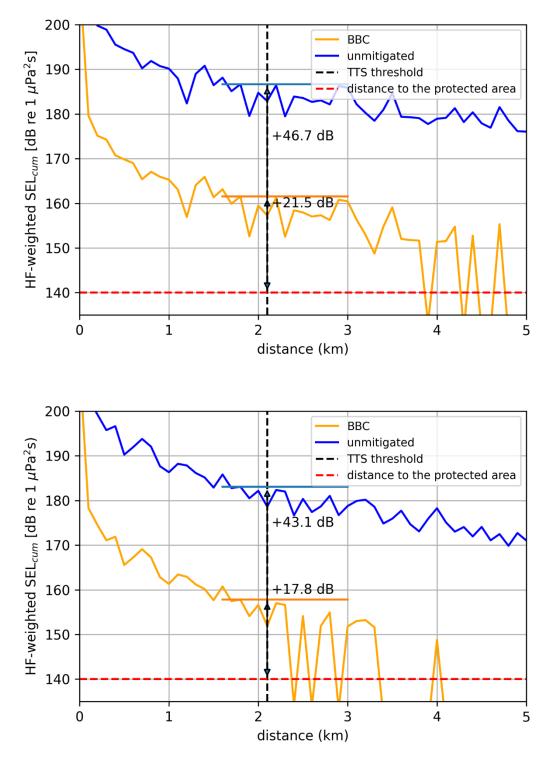


Figure 4.77. Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

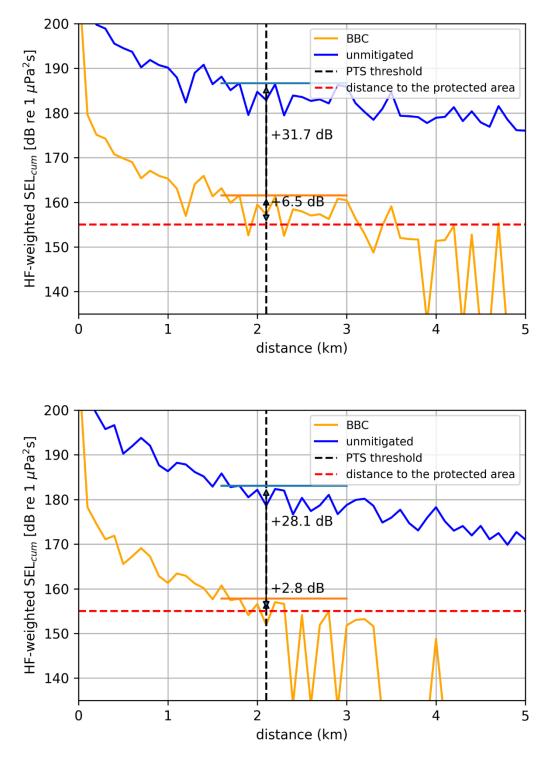


Figure 4.78. Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

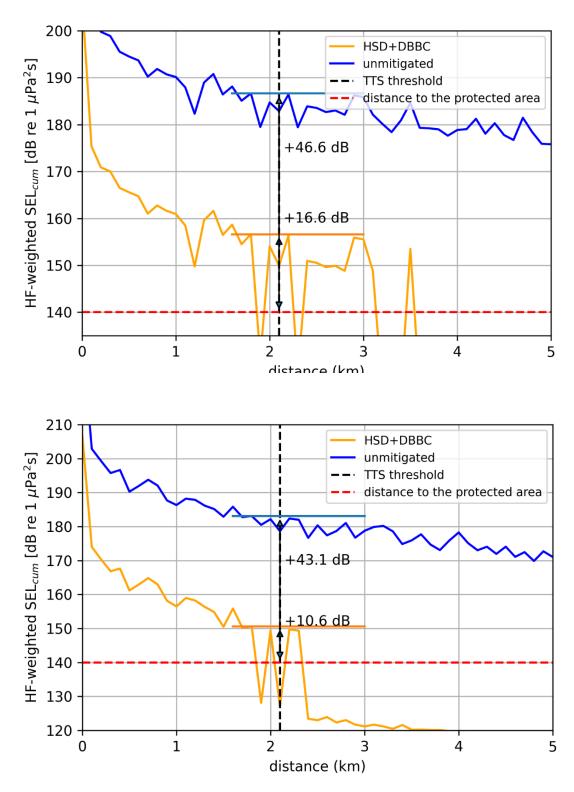


Figure 4.79. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

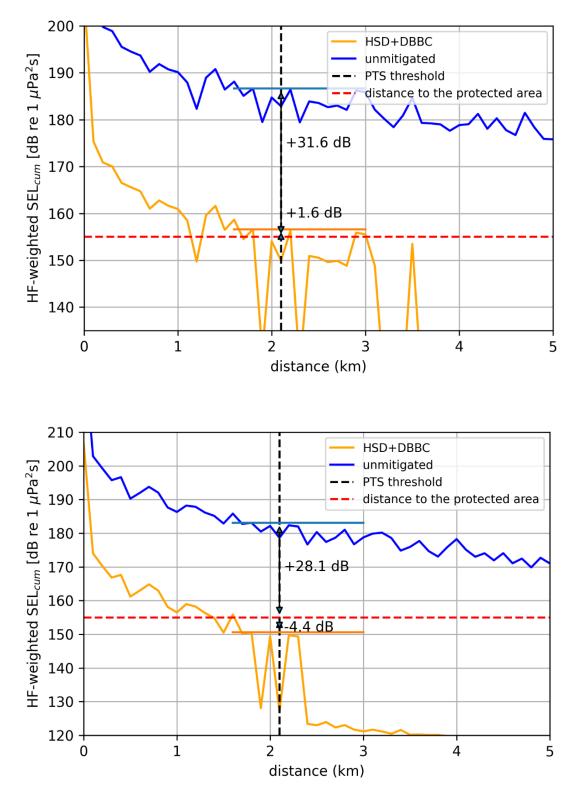
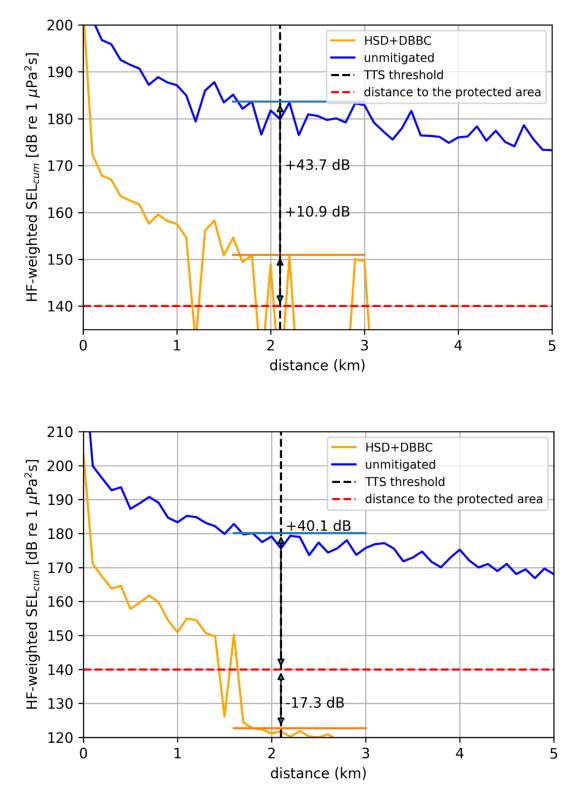



Figure 4.80. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.81. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

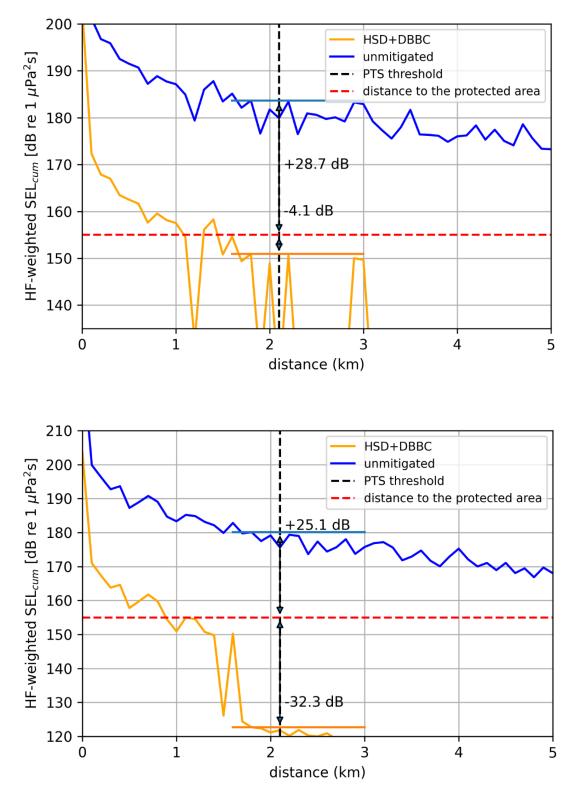


Figure 4.82. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

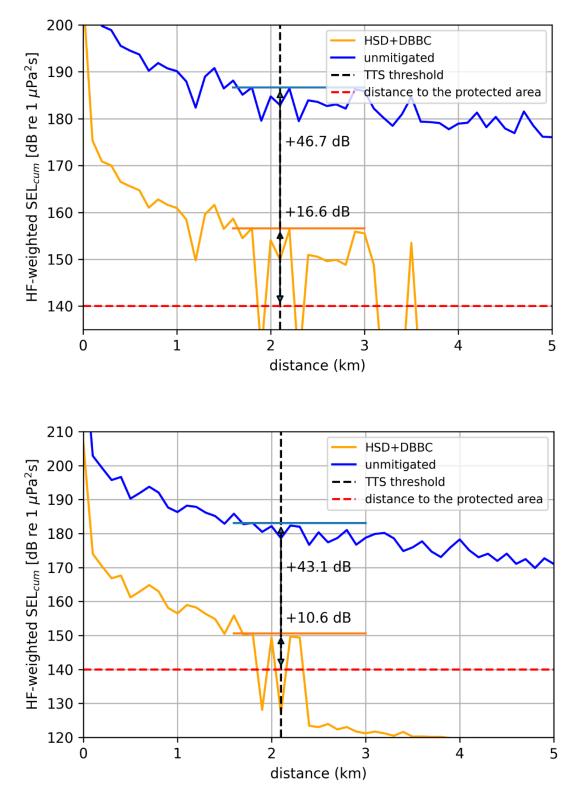


Figure 4.83. Noise propagation during simultaneous piling in two close locations and another one 20 km away, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.84. Noise propagation during simultaneous piling in two close locations and another one20 km away, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

4.3.2.3 The distances to threshold values for the scenario with mitigation measures (IQIP + DBBC) applied

Figure 4.85. Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF area, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

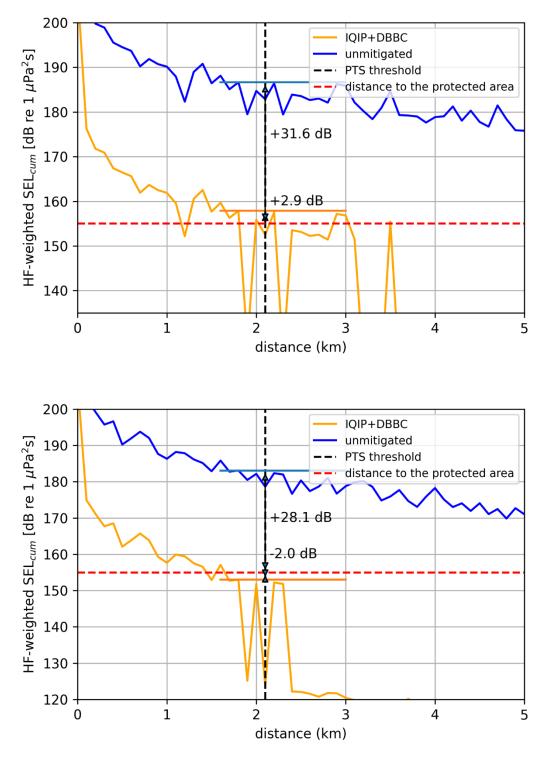
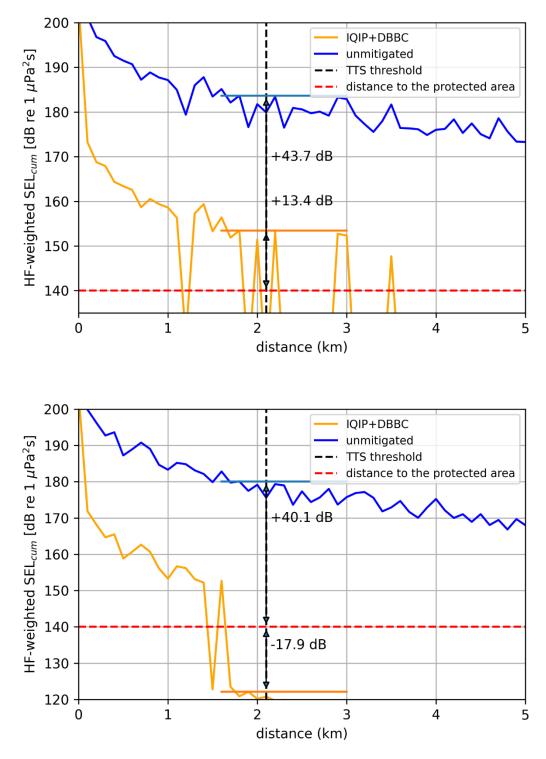



Figure 4.86.Noise propagation during simultaneous piling in two close locations within the Baltica-1 OWF
area, in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site
Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

Figure 4.87. Noise propagation during simultaneous piling in two locations 20 km apart, in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

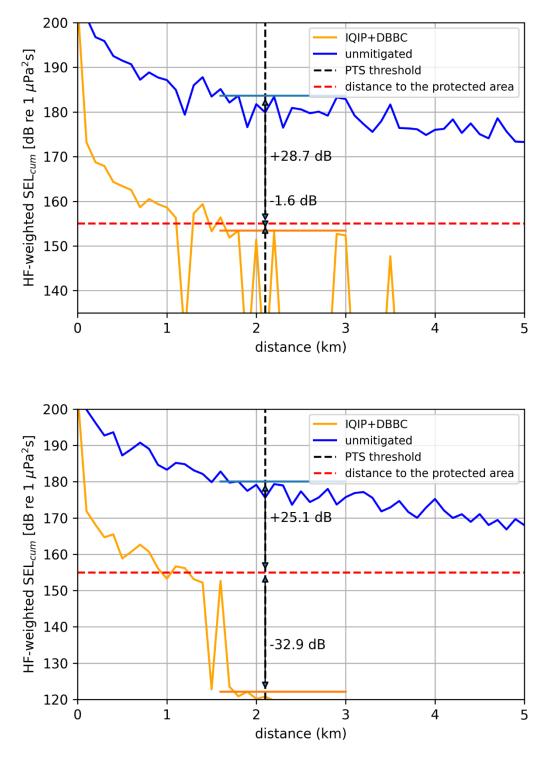


Figure 4.88.Noise propagation during simultaneous piling in two locations 20 km apart, in relation to the
PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och
Midsjöbankarna, in the winter (top) and summer (bottom)

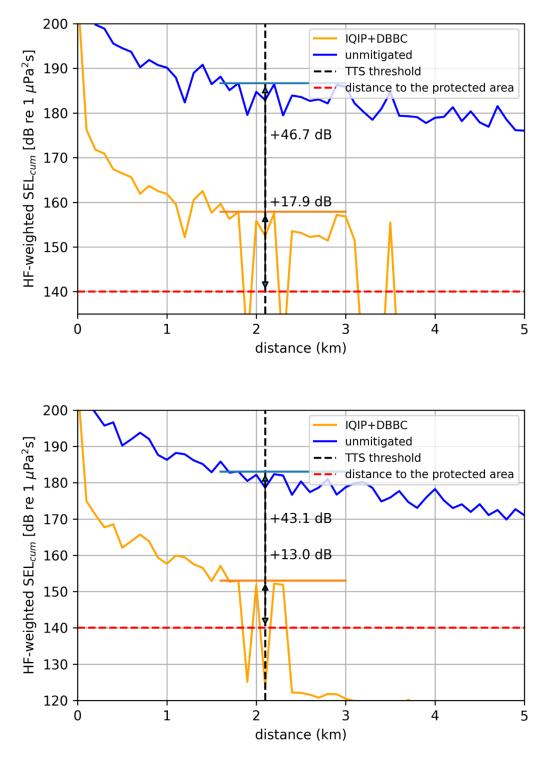


Figure 4.89. Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

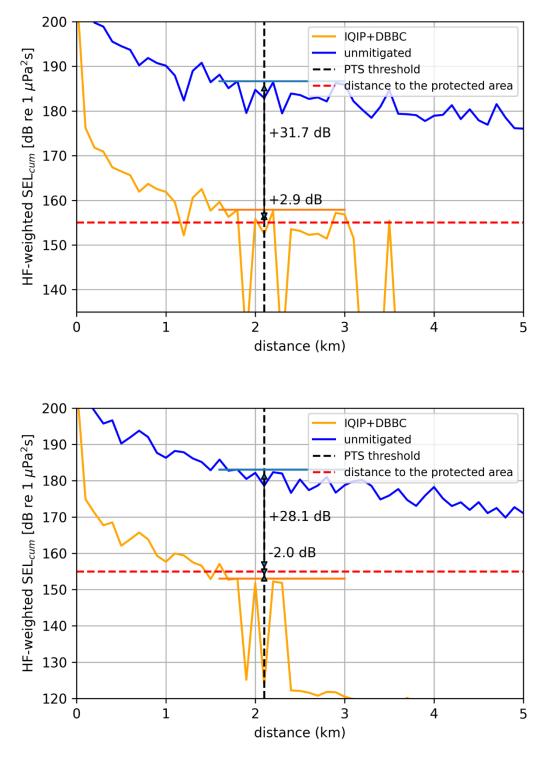


Figure 4.90. Noise propagation during simultaneous piling in two close locations and another one 20 km away in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna, in the winter (top) and summer (bottom)

4.4 IMPACT ON THE NATURA 2000 SITE

Additional analyses of impact in the Swedish Natura 2000 site were conducted for the behavioural response. The analyses showed that the result of piling in one location in the area of behavioural response will vary depending on the mitigation measures applied and the season. The largest range can be expected in the winter season, during which none of the analysed mitigation measures can reduce the percentage of protected site affected by the impact below 1%. In the summer season, the impact will cover less than 1% of the area if the mitigation measures in the form of BBC, HSD + DBBC, or IQIP + DBBC system are applied.

The impact ranges and the corresponding percentages of coverage of the Swedish Natura 2000 site are presented below [Table 4.11].

Table 4.11.The ranges and areas of impact causing the behavioural response in the harbour porpoise
calculated for the Baltica-1 OWF and the percentage of coverage of the Natura 2000 site Hoburgs
bank och Midsjöbankarna

Season	Mitigation type	Effect	Threshold value	Mean distance [km]	Maximum distance [km]	lmpact area [km²]	The percentage of coverage of the Natura 2000 site [%]	The value of VHF- weighted SPL _{125ms} at the boundary of the Natura 2000 site
	BBC	Behavioural response	103 SPL VHF- weighted	20.9	28.1	1394	3.8	124.8
Winter	HSD + DBBC	Behavioural response	103 SPL VHF- weighted	16.4	20.8	863	2.5	120.5
	IQIP + DBBC	Behavioural response	103 SPL VHF- weighted	17.3	20.8	956	2.6	121.5
	BBC	Behavioural response	103 SPL VHF- weighted	8.6	10.7	233	0.6	120.7
Summer	HSD + DBBC	Behavioural response	103 SPL VHF- weighted	7.2	8.6	164	0.4	116.4
	IQIP + DBBC	Behavioural response	103 SPL VHF- weighted	7.5	9.0	178	0.5	117.4

5 THE MODELLING RESULTS FOR THE CENTRAL LOCATION

5.1 THE MODELLING OF NOISE PROPAGATION FOR PILING IN A SINGLE LOCATION

This chapter presents the results of modelling conducted for the central location in the Baltica-1 OWF area in the summer seasons. The impact ranges for different threshold values are presented in the form of tables, and sound propagation maps are included.

5.1.1 The level of exposure to sound generated by a single blow

The SEL value for a single blow did not exceed 135 dB at the boundary of the modelled area, at a distance of 150 km from the sound source. The sound propagated mainly in the directions of north, south-west, and east from the piling site, where the highest sound levels were recorded [Figure 5.1].

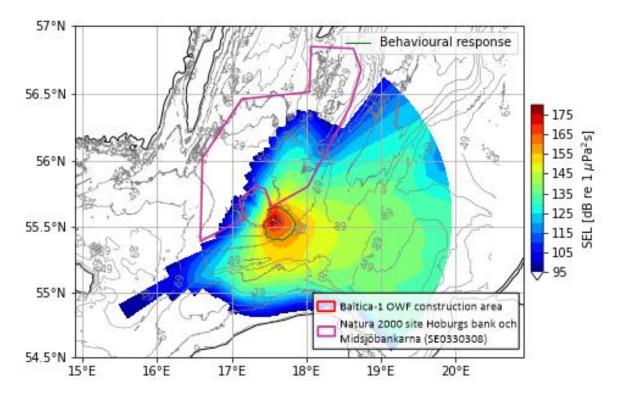
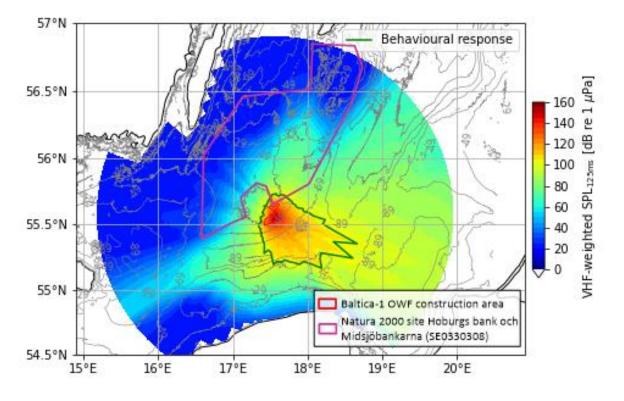


Figure 5.1.The map of unweighted SEL above the acoustic background for a single blow in the area of the
Baltica-1 OWF, in the summer season. Grey lines: isobaths

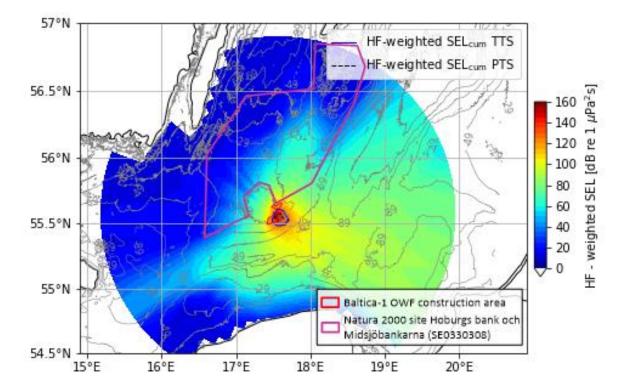
5.1.1.1 Harbour porpoise

As far as the harbour porpoise is concerned, the largest impact ranges were recorded for the behavioural response.

The estimates of cumulative SEL for the TTS and PTS were higher than in the case of a single blow, and TTS ranges exceeded the PTS ranges. The maximum range of cumulative impacts was 9.8 km and the values for a single blow did not exceed 3.2 km in the case of TSS.


For the SPL_{peak} , the maximum impact ranges for the TTS and PTS from a single blow were higher for the TTS with a maximum value of 3.0 km.

The application of mitigation in the form of HSD + DBBC helped reduce the range of all the impacts analysed. The values of cumulative TTS and PTS were reduced to 0.2 km and next to 0.1 km.


All ranges calculated for individual threshold values are shown in tabular form [Table 5.1], while noise propagation maps are presented in the following figures [Figure 5.2–Figure 5.5].

Season	Mitigation	Effect	VHF-weig [dB re 1 μ SEL [dB re	Pa] / HF-wei	unweighted SPL _{peak} [dB re 1 μPa]		
Scuson	type		Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	26.0	74.3	2867	-	-
	-	TTS (single blow)	2.3	3.2	16.5	2.7	3.0
		TTS (cumulative effect)	6.3	9.8	133	-	-
		PTS (single blow)	0.3	0.5	0.3	1.1	1.2
Summor		PTS (cumulative effect)	3.2	4.2	33.4	-	-
Summer		Behavioural response	6.5	8.9	138	-	-
		TTS (single blow)	0.1	0.1	0.03	0.2	0.2
	HSD + DBBC	TTS (cumulative effect)	0.2	0.2	0.1	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-

Table 5.1.The impact ranges and areas for the harbour porpoise calculated for the Baltica-1 OWF

Figure 5.2. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise

Figure 5.3. The map of HF-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise

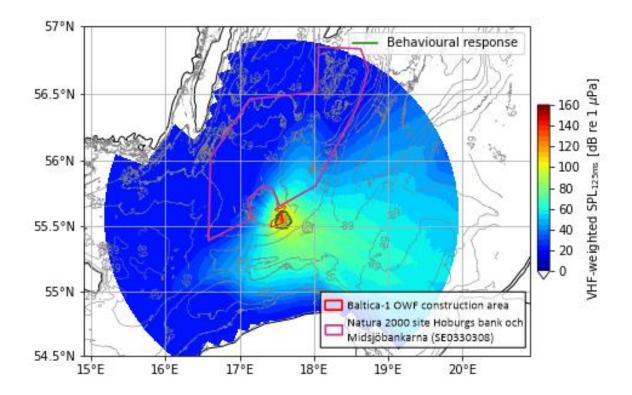


Figure 5.4. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

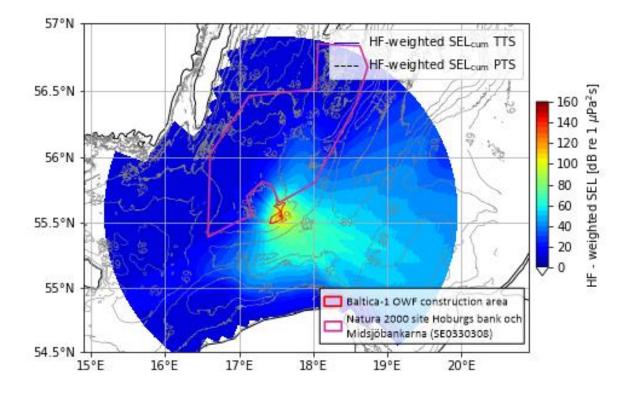


Figure 5.5. The map of HF-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

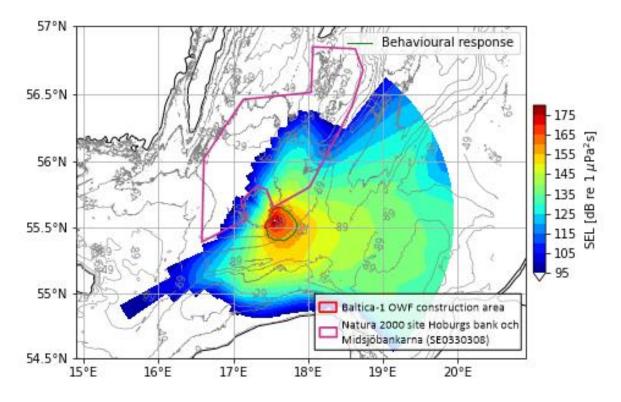
5.1.1.2 Grey and harbour seal

All impact ranges and areas (except for those of the cumulative TTS) calculated for the grey and harbour seal were lower than those obtained for the harbour porpoise.

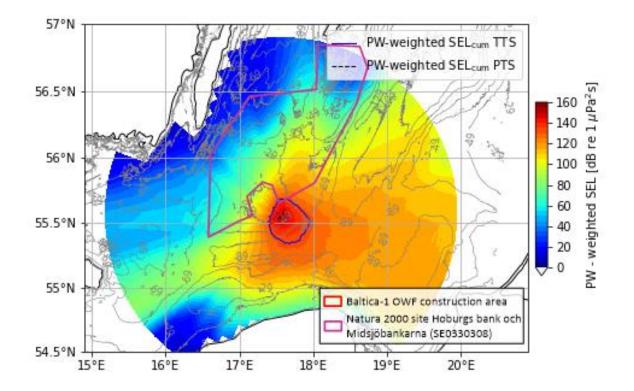
The largest impact range and the corresponding area were estimated for the cumulative TTS, and it was 921 km².

The impact ranges calculated for the SEL from a single blow reached a maximum range of only 0.3 km for the TTS.

The use of mitigation in the form of HSD + DBBC helped to significantly reduce the range of all the impacts analysed. All impacts based on weighted SEL were reduced to 0.1 km.


All ranges calculated for individual threshold values are shown in tabular form [Table 5.2], while noise propagation maps are presented in the following figures [Figure 5.6–Figure 5.9].

	Mitigation		•	ed SEL / PW- SEL/ [dB re 1	unweighted SPL _{peak} [dB re 1 µPa]		
Season	type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
Summer		Behavioural response	12.4	19.1	540	0.2	0.2
Summer	-	- TTS (single blow)		0.3	0.3	0.2	0.2


Table 5.2. The impact ranges and areas calculated for the grey seal and harbour seal in the Baltica-1 area

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

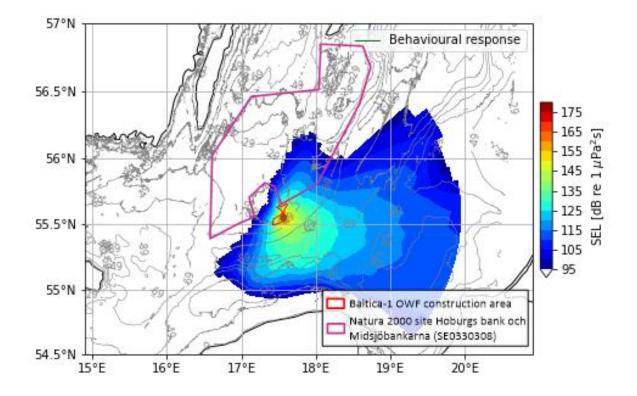

Season	Mitigation		-	ed SEL / PW- SEL/ [dB re 1	unweighted SPL _{peak} [dB re 1 µPa]		
	type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		TTS (cumulative effect)	16.1	26.2	921	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.3	0.4	0.4	-	-
		Behavioural response	2.4	2.6	18.3	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	HSD + DBBC	TTS (cumulative effect)	0.1	0.1	0.03	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-

Figure 5.6. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal

Figure 5.7. The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal

Figure 5.8. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

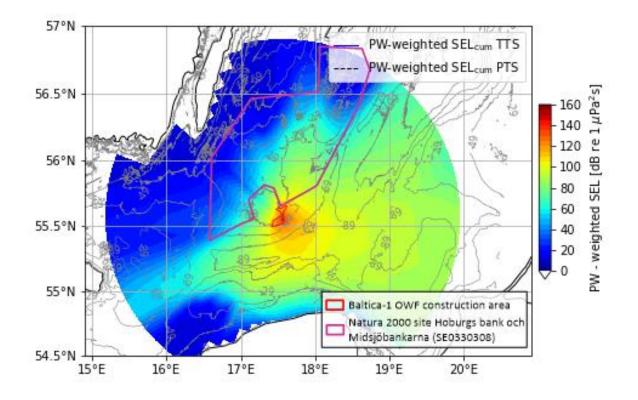


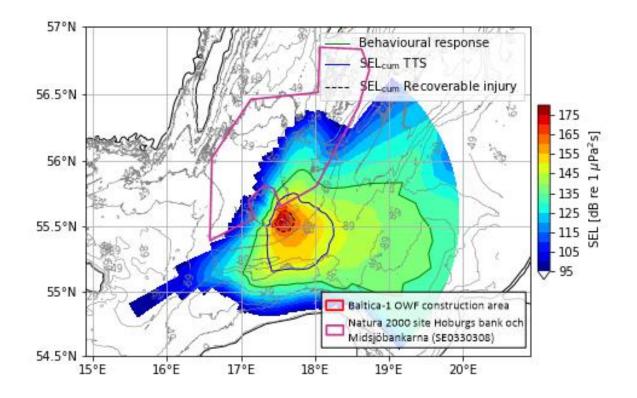
Figure 5.9. The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

5.1.1.3 Fish with swim bladders

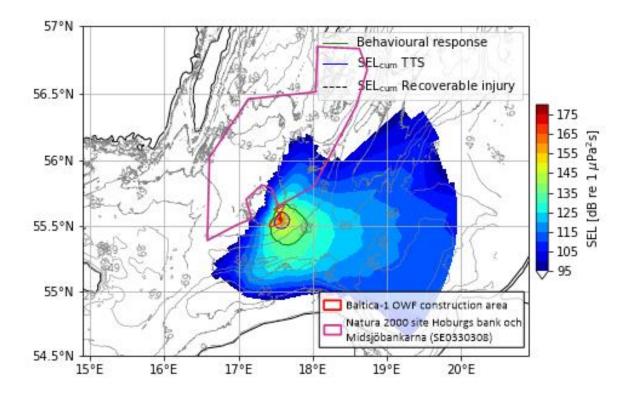
The largest ranges of impact on fish with swim bladders were found for the behavioural response, the maximum range of which was 133 km.

The predicted ranges of cumulative TTS and PTS were higher than the values obtained for a single blow, while the TTS ranges were higher than the ones obtained for the PTS.

The application of mitigation in the form of HSD + DBBC helped reduce the range of all the impacts analysed. However, the impact range of the behavioural response and the cumulative TTS remained at relatively elevated levels of 23.5 km and 8.0 km, respectively.


All ranges calculated for individual threshold values are shown in tabular form [Table 5.3], while noise propagation maps are presented in the following figures [Figure 5.10–Figure 5.11].

			unweighted SEL [dB re 1 µPa ² s]				
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km²]		
		Behavioural response	52.1	133	12398		
Summer		TTS (single blow)	0.6	0.6	1.0		
Summer	-	TTS (cumulative effect)	26.7	47.4	2820		
		Reversible hearing loss (single blow)	0.1	0.1	0.03		


 Table 5.3.
 The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

			unweighted SEL [dB re 1 µPa ² s]				
Season	Mitigation type		Mean distance [km]	Maximum distance [km]	Impact area [km²]		
		Reversible hearing loss (cumulative effect)	7.9	10.6	208.5		
		Behavioural response	14.5	23.5	774		
		TTS (single blow)	0.1	0.1	0.03		
	HSD + DBBC	TTS (cumulative effect)	6.3	8.0	132		
		Reversible hearing loss (single blow)	0.1	0.1	0.03		
		Reversible hearing loss (cumulative effect)	1.1	1.1	3.8		

Figure 5.10. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fishes with swim bladders

Figure 5.11. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied

5.2 The modelling of noise propagation as a result of piling in several locations

This chapter presents the results of acoustic modelling in the summer season performed for simultaneous piling in the central location within the Baltica-1 OWF area and outside of it. The use of mitigation measures in the form of HSD + DBBC was taken into account. The ranges of impact for individual acoustic thresholds and sound propagation maps are presented.

5.2.1 Harbour porpoise

As can be seen in the table below [Table 5.4], the areas of impact increased with the number of piling sources, reaching the highest values in the case of four locations. Noise propagation maps are presented in the following figures [Figure 5.12–Figure 5.17].

 Table 5.4.
 The areas of impact on the harbour porpoise in case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold: the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)

	Mitigation type	Impact area [km ²]	Impact area [km²]									
Season		Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources			
		Behavioural response	138	181	276	276	319	414	552			
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1			
Summer	HSD + DBBC	TTS (cumulative effect)	0.1	0.5	0.2	0.2	0.6	0.3	0.7			
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09			
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1			

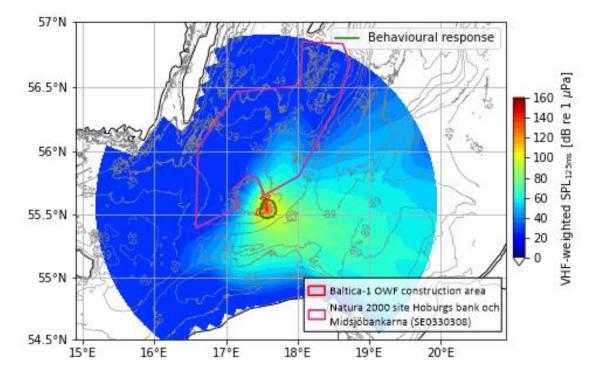


Figure 5.12. The map of VHF-weighted SPL_{125ms} from piling sources located at a small distance from each other in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

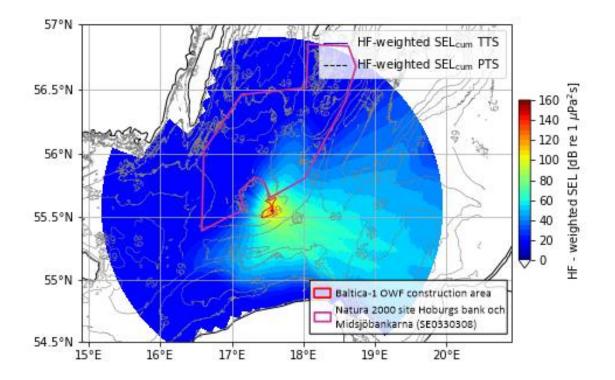


Figure 5.13. The map of HF-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

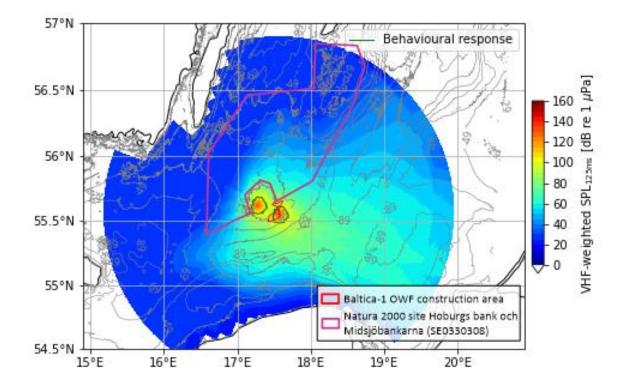
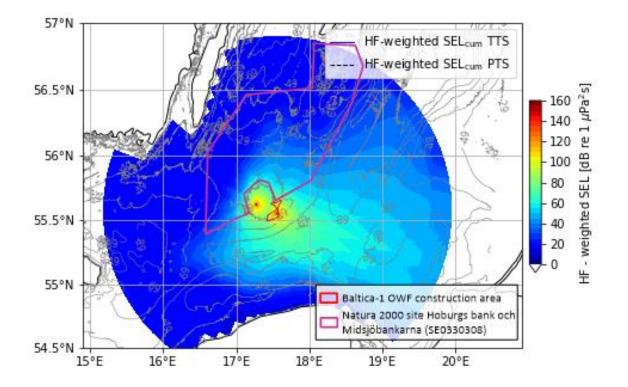



Figure 5.14.The map of VHF-weighted SPL125ms from piling sources located at a distance of 20 km from each
other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

Figure 5.15. The map of HF-weighted SEL _{cum} from piling sources located at a distance of 20 km from each other and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

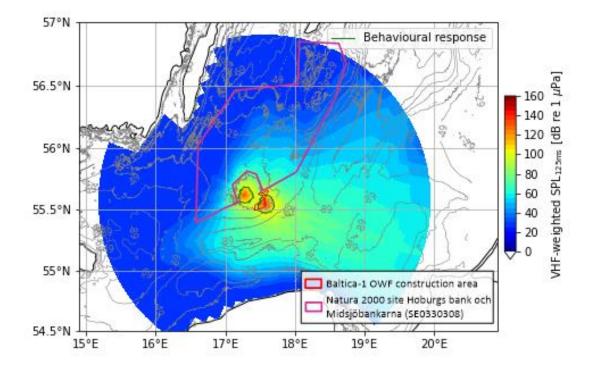


Figure 5.16. The map of VHF-weighted SPL_{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

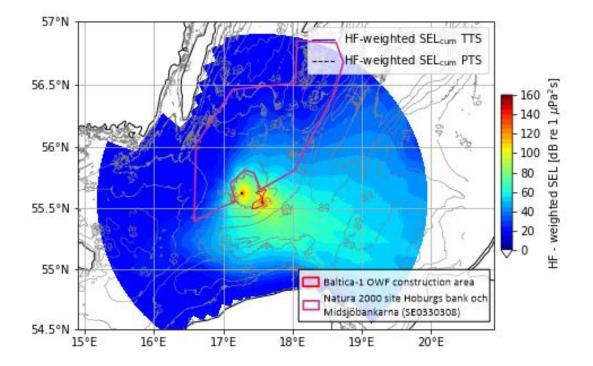


Figure 5.17. The map of HF-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with the HSD + DBBC system applied

5.2.2 Grey and harbour seal

Similarly to the results obtained for the harbour porpoise, the impact areas for seals increased with the number of piling sources, reaching the highest values for four locations. Impact areas and noise propagation maps are presented in the figure below [Table 5.5] and the following figures [Figure 5.18–Figure 5.23].

Table 5.5.The areas of impact on the grey seal and common seal in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in
bold: the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)

		Impact area [km ²]	Impact area [km²]										
Season	Mitigation type	Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources				
		Behavioural response	18.3	35.5	33.9	36.6	68.4	52.2	86.7				
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09				
Summer	HSD + DBBC	TTS (cumulative effect)	0.03	1.5	0.2	0.06	2.2	0.2	2.27				
		PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09				
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.09				

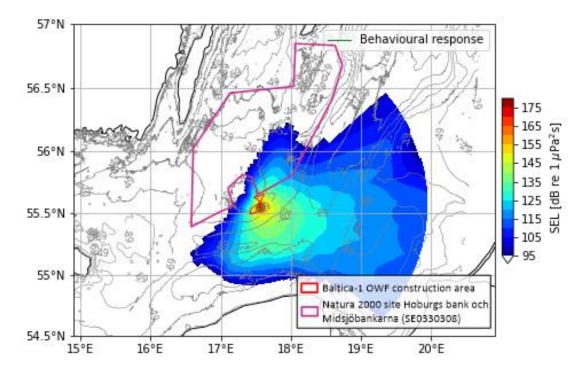


Figure 5.18. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

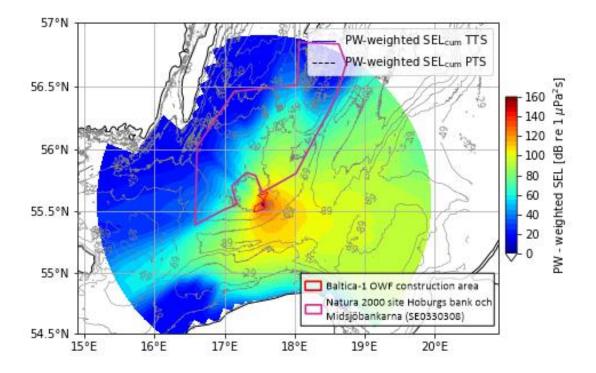


Figure 5.19. The map of PW-weighted SEL_{cum} from piling sources located close to each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

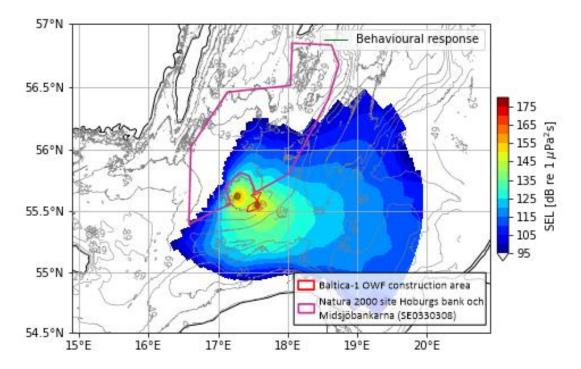


Figure 5.20. The map of unweighted SEL above the acoustic background from piling sources located 20 km apart and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

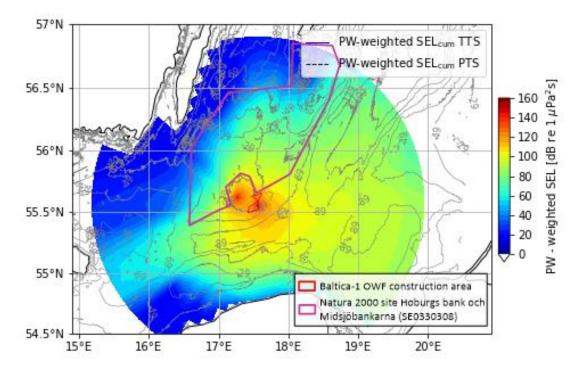


Figure 5.21. The propagation map of PW-weighted SEL_{cum} noise above the ambient noise from piling sources located 20 km apart and the impact ranges for the grey seal and harbour seal with the HSD + DBBC system applied

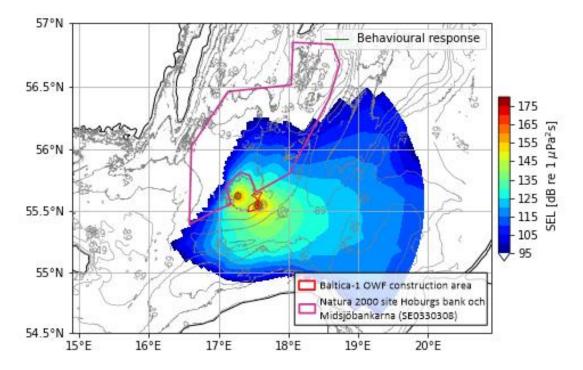


Figure 5.22. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

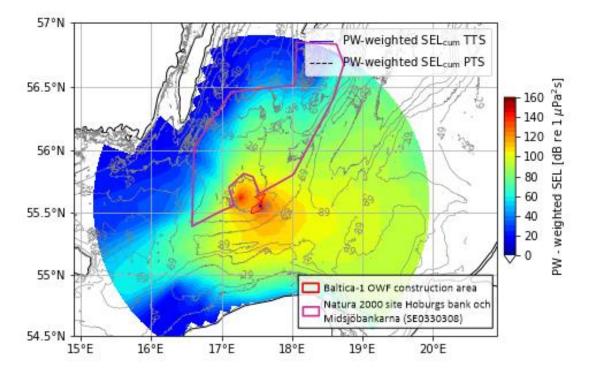


Figure 5.23. The map of PW-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with the HSD + DBBC system applied

5.2.3 Fish with swim bladders

Similarly to the results obtained for the harbour porpoise and seals, the impact areas for fish with swim bladders increased with the number of piling sources, reaching the highest values in the case of four locations. The impact areas and noise propagation maps are presented in the table below [Table 5.6] and the following figures [Figure 5.24–Figure 5.26].

Table 5.6.The areas of impact on fish with swim bladders in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF (numbers in bold:
the highest values for 2 and 3 sources, respectively; piling with the HSD + DBBC mitigation system applied)

	Mitigation type	Impact area [km ²]										
Season		Effect	1 source	2 sources < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources			
		Behavioural response	774	1175	1548	1548	1949	2723	3497			
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
Summer	HSD + DBBC	TTS (cumulative effect)	132	206	335	264	409	467	599			
		Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1			
		Reversible hearing loss (cumulative effect)	3.8	8.5	7.6	7.6	17.0	11.4	20.7			

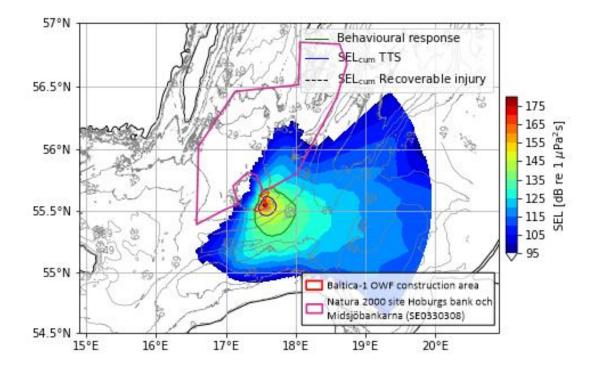
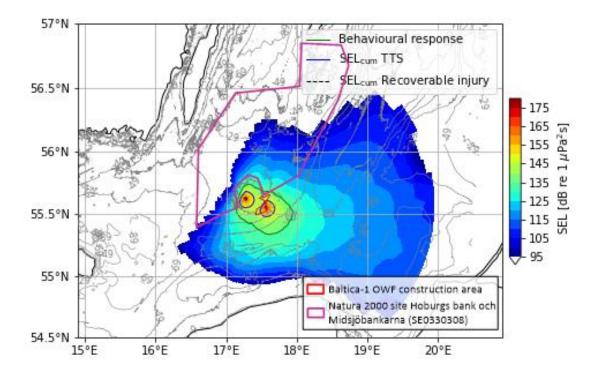



Figure 5.24. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on fish with swim bladders, with the HSD + DBBC system applied

Figure 5.25. The map of unweighted SEL above the acoustic background from piling sources located 20 km apart and the ranges of impact on fish with swim bladders with the HSD + DBBC system applied

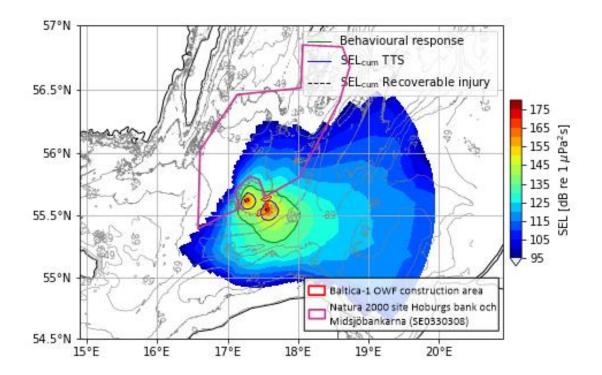


Figure 5.26.The map of unweighted SEL above the acoustic background for three piling sources, two of
which are located at a small distance from each other and the third is 20 km away, and the
ranges of impact on fish with swim bladders with the HSD + DBBC system applied

5.3 NOISE LEVELS AT THE BOUNDARY OF THE NATURA 2000 AREA

Presented below are levels of noise heard at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna in the summer season. Analyses were carried out for the harbour porpoise, as it is subject to protection in the above-mentioned area, and additionally, the threshold values for this species are the lowest among the analysed mammals.

5.3.1 Piling in a single location

The tables below present the differences between the calculated sound values at the boundary of the Natura 2000 site and the threshold values for scenarios without any mitigation measures applied [Table 5.7] and with the mitigation systems taken into account [Table 5.8]. The corresponding graphs have been developed for the TTS and PTS and presented in the following figures [Figure 5.27–Figure 5.28].

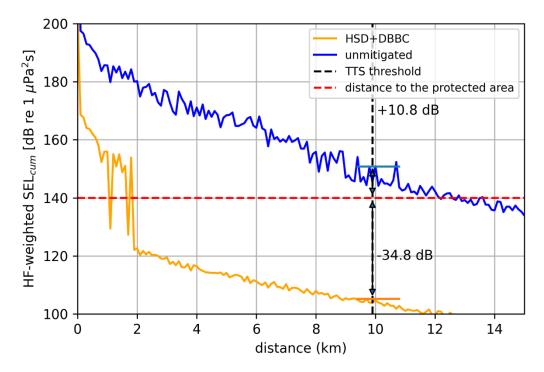

Based on the presented results, it is shown that in the case of piling at a single location, the threshold values of cumulative TTS for the harbour porpoise will be exceeded at the boundary of the Swedish Natura 2000 if no mitigation measures are used. The use of the HSD + DBBC system showed a reduction in the noise level at the boundary of the Natura 2000 area to an acceptable level concerning both analysed impacts.

Table 5.7.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures
applied

			The threshold value of SEL at the	Without mitigating measures			
Season	Natura 2000 site	Effect	boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled value of HF-weighted SEL at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
Summer	Hoburgs bank och		140	150.8	+10.8		
Summer	Midsjöbankarna	PTS (cumulative effect)	155	100.0	-4.2		

Table 5.8.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise
with mitigation measures applied

			SEL threshold value	With the HSD + DBBC system		
Season	Natura 2000 site	Effect	at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The modelled value of HF- weighted SEL at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF- weighted SEL and the threshold value [dB]	
Summer	Hoburgs bank och	TTS (cumulative effect)	140	105.3	-34.8	
Summer	Midsjöbankarna	PTS (cumulative effect)	155	105.2	-49.8	

Figure 5.27. The propagation w piling noise within the Baltic-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 5.28. The propagation w piling noise within the Baltic-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

5.3.2 Piling in several locations

The differences in noise levels between the threshold values and the modelled values at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna were calculated also for simultaneous piling in several locations. The results for different numbers of piling locations are presented in the table below [Table 5.9] for the scenario without mitigation measures applied, and in the following table [Table 5.10] for the scenario with mitigation. The corresponding graphs for the TTS and PTS are presented in the following figures [Figure 5.29–Figure 5.34].

Based on the results obtained, it was concluded that in the case of piling at several locations, the threshold values for the TTS and PTS will be exceeded at the boundary of the Natura 2000 site in question. However, the application of a mitigation system in the form of HSD + DBBC showed a decrease in the noise level at the boundary of the Natura 2000 site to an acceptable level concerning both analysed impacts in all scenarios.

 Table 5.9.
 The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied

				SEL threshold value at the	Without mitigating measures	
Season	Sound sources	Natura 2000 site	Effect	boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]
	2 sources –	Hoburgs bank och	TTS (cumulative effect)	140	156.0	+16.0
	<1 km	Midsjöbankarna	PTS (cumulative effect)	155	130.0	+1.0
Common	2 sources –	Hoburgs bank och	TTS (cumulative effect)	140	150.0	+10.9
Summer	20 km	Midsjöbankarna	PTS (cumulative effect)	155	150.9	-4.1
	3 sources –	Hoburgs bank och	TTS (cumulative effect)	140	156.0	+16.0
	2 <1 km, 1 = 20 km	Midsjöbankarna	PTS (cumulative effect)	155	100.0	+1.0

 Table 5.10.
 The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied

				The threshold value of SEL	With the HSD + DBBC system	
Season	Sound sources	Natura 2000 site	Effect	at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The modelled HF-weighted SEL at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF- weighted SEL and the threshold value [dB]
	2 sources –	Hoburgs bank och	TTS (cumulative effect)	140	108.7	-31.3
	< 1 km	Midsjöbankarna	PTS (cumulative effect)	155	108.7	-46.3
Summer	2 sources –	Hoburgs bank och	TTS (cumulative effect)	140	106.2	-33.8
Summer	20 km	Midsjöbankarna	PTS (cumulative effect)	155	100.2	-48.8
	3 sources –	Hoburgs bank och	TTS (cumulative effect)	140	109.2	-30.8
	2 < 1km, 1 = 20 km	Midsjöbankarna	PTS (cumulative effect)	155	109.2	-45.8

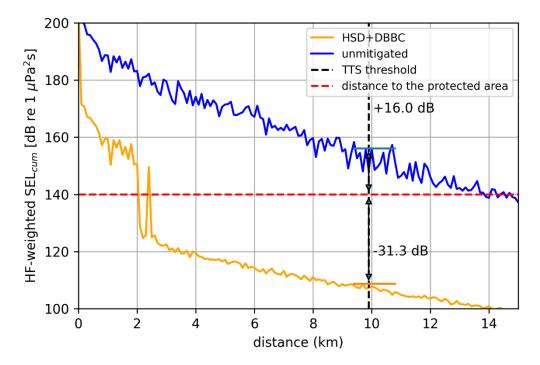
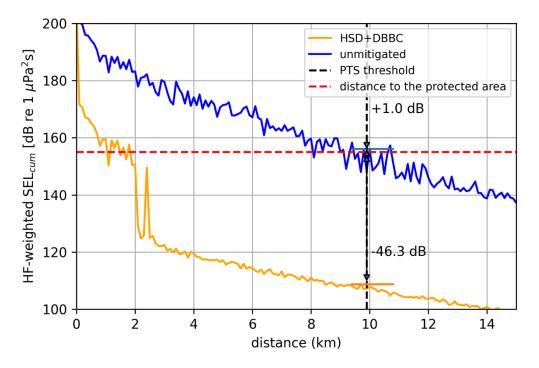
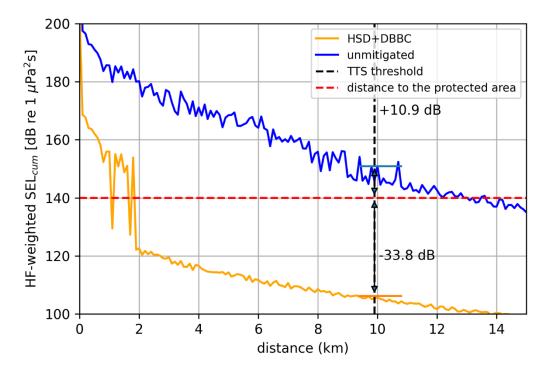
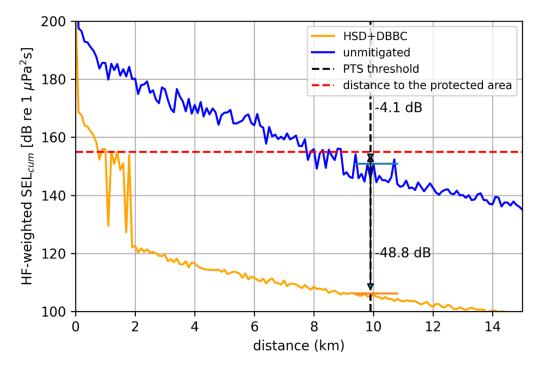


Figure 5.29.The propagation of piling noise from simultaneous piling in two close locations within the
Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura
2000 site Hoburgs bank och Midsjöbankarna

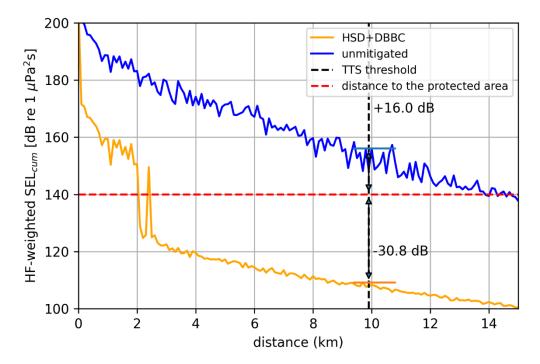

Figure 5.30. The propagation of piling noise from simultaneous piling in two close locations within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 5.31. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 5.32. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 5.33. Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

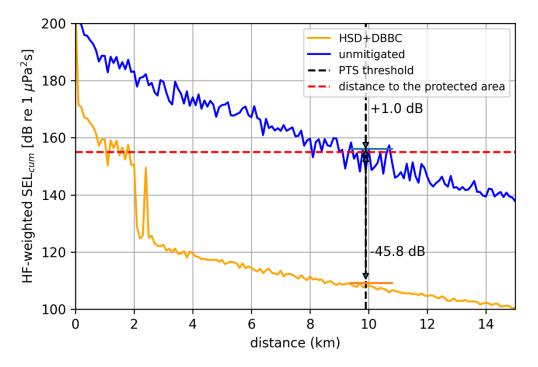


Figure 5.34. Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

5.4 The IMPACT WITHIN THE NATURA 2000 SITE

The analyses of impact in the Swedish Natura 2000 site were conducted for the behavioural response. They showed that as a result of piling in one location, the range of impact of the behavioural response will not cover the Natura 2000 site if mitigation measures in the form of HSD + DBBC are applied.

The impact ranges and the corresponding percentages of coverage of the Swedish Natura 2000 site are presented below [Table 5.11].

Table 5.11.The ranges and areas of impact causing a behavioural response in the harbour porpoise, calculated
for the central location in the Baltica-1 OWF area and the percentage of coverage of the Natura
2000 site Hoburgs bank och Midsjöbankarna

Season	Mitigation type	Effect	Threshold value	Mean distance [km]	Maximum distance [km]	lmpact area [km²]	The percentage of coverage of the Natura 2000 site [%]	The value of VHF- weighted SPL _{125ms} at the boundary of the Natura 2000 site
Summer	HSD + DBBC	Behavioural response	103 SPL VHF- weighted	6.5	8.9	138	0	87.0

6 THE MODELLING RESULTS FOR THE SOUTHERN LOCATION

6.1 THE MODELLING OF NOISE PROPAGATION FOR PILING IN A SINGLE LOCATION

This chapter presents the results of modelling carried out for the southern location within the Baltica-1 OWF in the summer season. The impact ranges for different threshold values are presented in the form of tables, and sound propagation maps are included.

6.1.1 The level of exposure to sound generated by a single blow

The SEL value for a single blow did not exceed 130 dB at the boundary of the modelled area, at a distance of 150 km from the sound source. The sound propagated mainly in the directions of north and southeast from the piling site; this is where the highest sound levels were recorded [Figure 6.1].

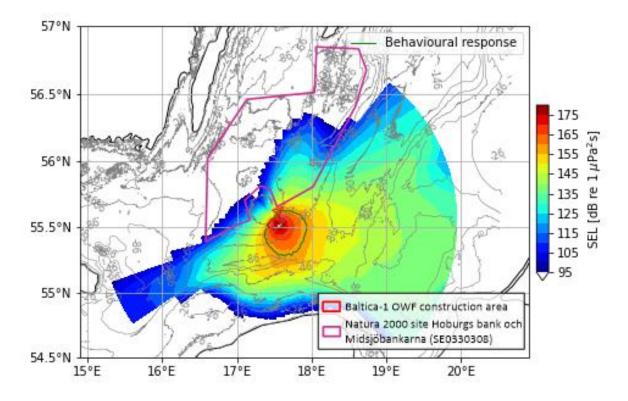
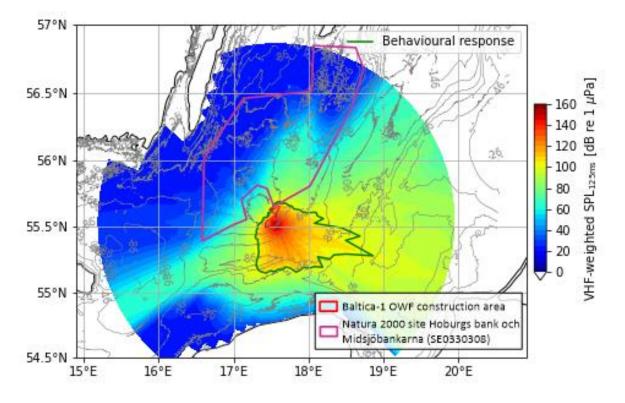


Figure 6.1. The map of unweighted SEL above the acoustic background for a single blow in the area of the Baltica-1 OWF, in the summer season. Grey lines: isobaths

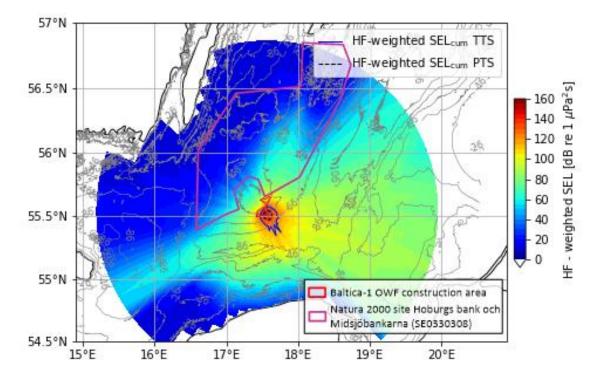
6.1.1.1 Harbour porpoise

As far as the harbour porpoise is concerned, the largest impact ranges were recorded for the behavioural response.

The estimates of cumulative SEL for the TTS and PTS were higher than in the case of a single blow, and TTS ranges exceeded the PTS ranges. The maximum range of cumulative impacts was 20.3 km and the values for a single blow did not exceed 3.5 km in the case of TSS.


For the SPL_{peak} , the maximum impact ranges for the TTS and PTS from a single blow were higher for the TTS with a maximum value of 4.0 km.

The use of a mitigation measure in the form of a BBC contributed to a reduction in the impact ranges of all the analysed effects.


All ranges calculated for individual threshold values are shown in tabular form [Table 6.1], while noise propagation maps are presented in the following figures [Figure 6.2–Figure 6.5].

Season	Mitigation	Effect	-	hted SPL [dB -weighted SE	unweighted SPL [dB re 1 µPa]		
3683011	type	Lifett	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	28.6	85.8	3417	-	-
	-	TTS (single blow)	2.6	3.5	20.8	3.6	4.0
		TTS (cumulative effect)	8.0	20.3	229	-	-
		PTS (single blow)	0.3	0.6	0.3	1.4	1.6
Summer		PTS (cumulative effect)	3.8	5.5	46.7	-	-
Summer		Behavioural response	8.8	12.3	251	-	-
		TTS (single blow)	0.1	0.1	0.03	0.8	0.8
	BBC	TTS (cumulative effect)	0.5	0.6	0.7	-	-
		PTS (single blow)	0.1	0.1	0.03	0.3	0.3
		PTS (cumulative effect)	0.1	0.1	0.03	-	-

 Table 6.1.
 The distances to threshold values for the harbour porpoise in the Baltica-1 OWF area

Figure 6.2. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise

Figure 6.3. The map of *HF*-weighted *SEL*_{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise

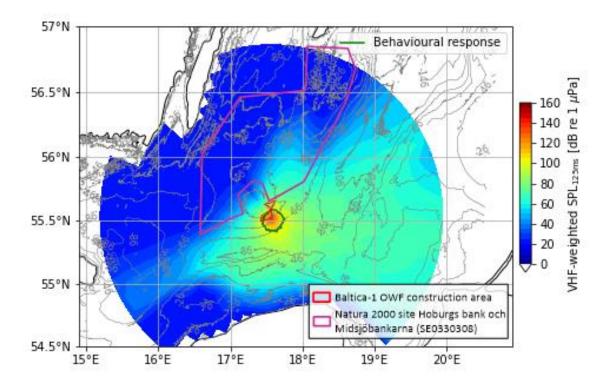
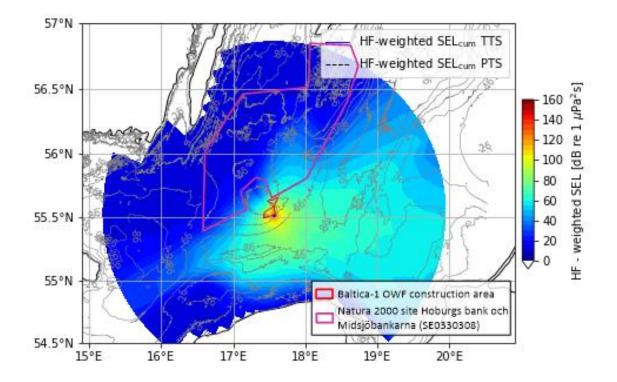



Figure 6.4. The map of VHF-weighted SPL_{125ms} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied

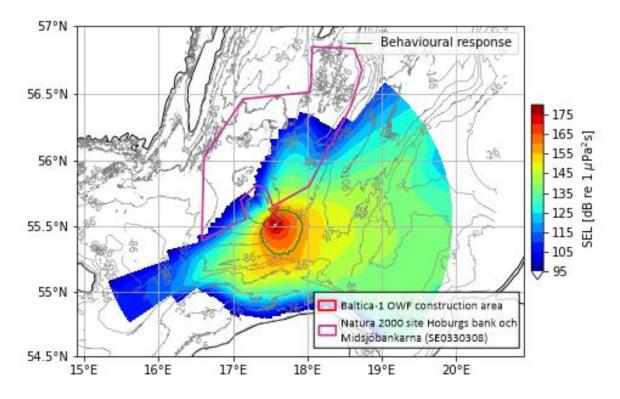
Figure 6.5. The map of HF-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied

6.1.1.2 Grey and harbour seal

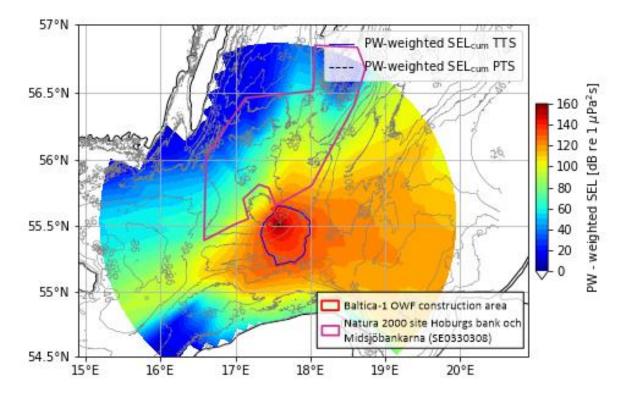
All impact ranges and areas (except for those of the cumulative TTS) calculated for the grey and harbour seal were lower than those obtained for the harbour porpoise.

The largest impact range and the corresponding area were estimated for the cumulative TTS, and it was 1486 km².

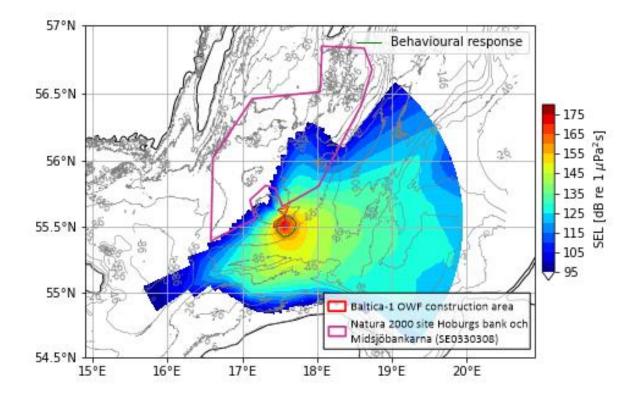
The impact ranges calculated for the SEL from a single blow reached a maximum range of only 0.3 km for the TTS.


All ranges calculated for individual threshold values are shown in tabular form [Table 6.2], while noise propagation maps are presented in the following figures [Figure 6.6–Figure 6.9].

	Mitigation		-	ed SEL / Pw- SEL [dB re 1	unweighted SPL _{peak} [dB re 1 µPa]		
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		Behavioural response	16.9	27.5	1011	0.3	0.3
Summer		TTS (single blow)	0.3	0.3	0.3	0.3	0.3
Summer	-	TTS (cumulative effect)	20.2	35.3	1486	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1


Table 6.2.The distances to the threshold values for the grey seal and harbour seal calculated for the Baltica-
1 OWF area

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area


	Mitigation type		•	ed SEL / Pw- SEL [dB re 1	unweighted SPL _{peak} [dB re 1 µPa]		
Season		Effect	Mean distance [km]	Maximum distance [km]	Impact area [km ²]	Mean distance [km]	Maximum distance [km]
		PTS (cumulative effect)	0.5	0.8	0.9	-	-
		Behavioural response	8.1	10.0	210	0.1	0.1
		TTS (single blow)	0.1	0.1	0.03	0.1	0.1
	BBC	TTS (cumulative effect)	1.1	1.5	3.8	-	-
		PTS (single blow)	0.1	0.1	0.03	0.1	0.1
		PTS (cumulative effect)	0.1	0.1	0.03	-	-

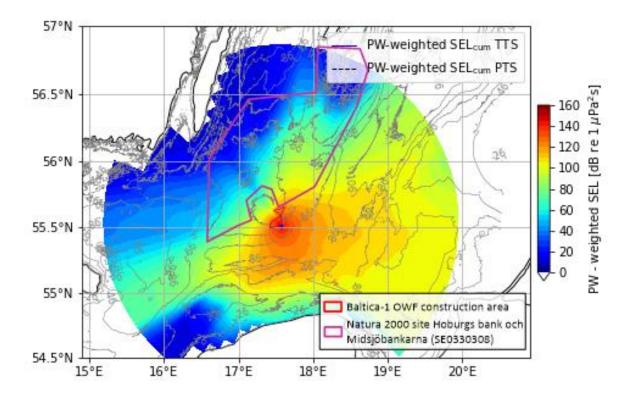

Figure 6.6. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal

Figure 6.7. The map of PW-weighted SEL_{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal

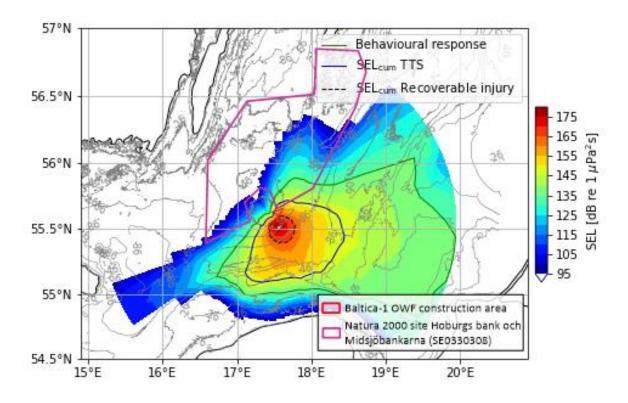
Figure 6.8. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied

Figure 6.9. The map of PW-weighted SEL _{cum} in the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied

6.1.1.3 Fish with swim bladders

The maximum range of behavioural response and cumulative TTS for fish with swim bladders exceeded the model domain range of 150 km from the source, with the largest areas of impact among the analysed thresholds.

The predicted ranges of cumulative TTS and PTS were higher than the values obtained for a single blow, while the TTS ranges were higher than the ones obtained for the PTS.


All ranges calculated for individual threshold values are shown in tabular form [Table 6.3], while noise propagation maps are presented in the following figures [Figure 6.10–Figure 6.11].

			unweighted SEL [dB re 1 μPa ² s]				
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km²]		
		Behavioural response	60.9	150	17026		
		TTS (single blow)	0.7	0.7	1.5		
		TTS (cumulative effect)	32.9	55.8	4169		
Summer	-	Reversible hearing loss (single blow)	0.1	0.1	0.03		
		Reversible hearing loss (cumulative effect)	10.7	14.2	378		

Table 6.3. The ranges and areas of impact calculated for fish with swim bladders in the Baltica-1 OWF area

Report on the Environmental Impact Assessment of the Baltica-1 Offshore Wind Farm Appendix 3 – The numerical modelling of the propagation of noise from the pile-driving in the Baltica-1 OWF area

			unweighted SEL [dB re 1 μPa ² s]				
Season	Mitigation type	Effect	Mean distance [km]	Maximum distance [km]	Impact area [km²]		
		Behavioural response	36.5	65.9	5197		
		TTS (single blow)	0.2	0.2	0.1		
	550	TTS (cumulative effect)	18.7	33.0	1278		
	BBC	Reversible hearing loss (single blow)	0.1	0.1	0.03		
		Reversible hearing loss (cumulative effect)	4.8	5.2	73.1		

Figure 6.10. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fishes with swim bladders

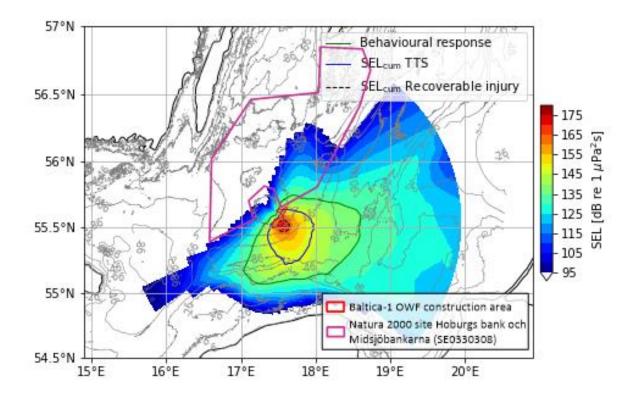


Figure 6.11. The map of unweighted SEL above the acoustic background in the Baltica-1 OWF area and the ranges of impact on fish with swim bladders with a BBC applied

6.2 THE MODELLING OF NOISE PROPAGATION AS A RESULT OF PILING IN SEVERAL LOCATIONS

This chapter presents the results of acoustic modelling in the summer season performed for simultaneous piling in several locations within the Baltica-1 OWF area and outside of it. The use of mitigation measures in the form of BBC was taken into account. The ranges of impact for individual acoustic thresholds and sound propagation maps are presented.

6.2.1 Harbour porpoise

As can be seen in the table below [Table 6.4], the areas of impact increased with the number of piling sources, reaching the highest values in the case of four locations. Noise propagation maps are presented in the following figures [Figure 6.12–Figure 6.17].

Table 6.4.The areas of impact on the harbour porpoise in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF area (numbers in bold:
the highest values for 2 and 3 sources, respectively; piling with a mitigation system applied)

	Mitigation type	Impact area [km ²]	Impact area [km²]									
Season		Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources			
		Behavioural response	251	329	541	502	612	792	1043			
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1			
Summer	BBC	TTS (cumulative effect)	0.7	2.2	45.0	1.4	46.8	45.7	47.5			
	-	PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.1			
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.1			

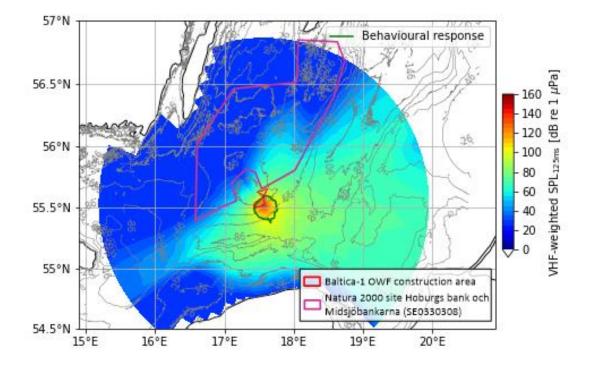


Figure 6.12. The map of VHF-weighted SPL_{125ms} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied

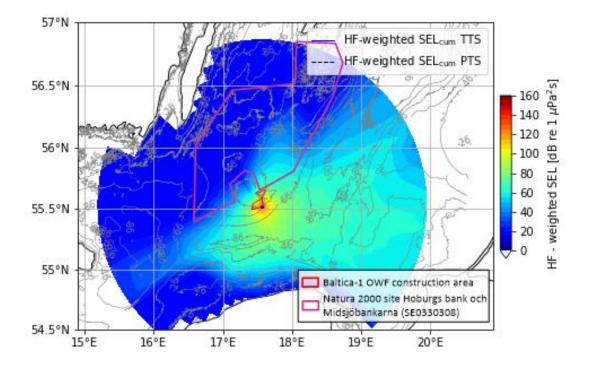
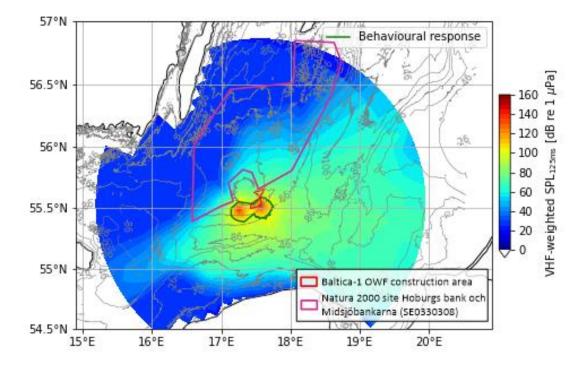
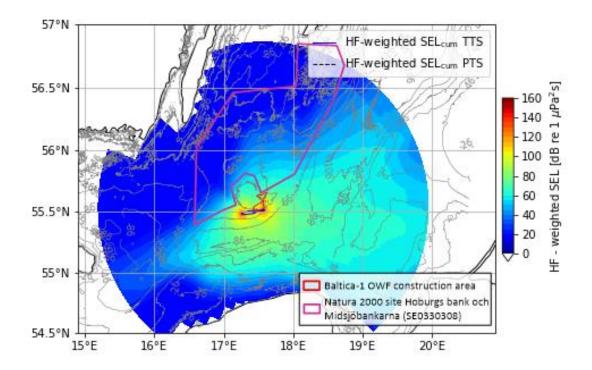




Figure 6.13. The map of HF-weighted SEL_{cum} from piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the harbour porpoise with a BBC applied

Figure 6.14. The map of VHF-weighted SPL_{125ms} from piling sources located 20 km apart and the ranges of impact on the harbour porpoise with a BBC applied

Figure 6.15. The map of HF-weighted SEL_{cum} from piling sources located 20 km apart and the ranges of impact on the harbour porpoise with a BBC applied

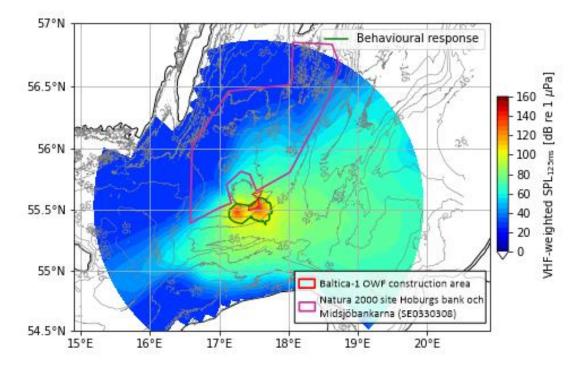


Figure 6.16. The map of VHF-weighted SPL_{125ms} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied

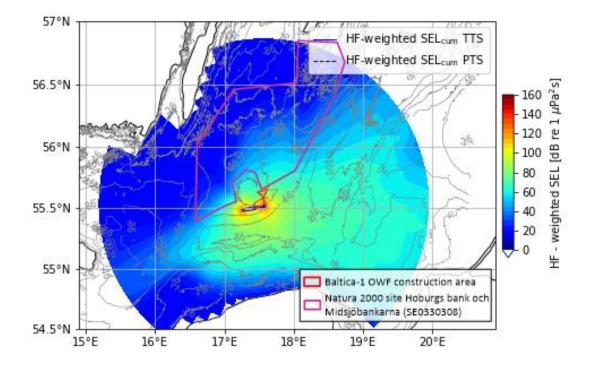


Figure 6.17. The map of HF-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the harbour porpoise with a BBC applied

6.2.2 Grey and harbour seal

Similarly to the results obtained for the harbour porpoise, the impact areas for seals increased with the number of piling sources, reaching the highest values for four locations. Impact areas and noise propagation maps are presented in the figure below [Table 6.5] and the following figures [Figure 6.18–Figure 6.23].

Table 6.5.The areas of impact on the grey seal and harbour seal in the case of simultaneous piling at several locations within and outside the Baltica-1 OWF area (numbers
in bold: the highest values for 2 and 3 sources, respectively; piling with a mitigation system applied)

	Mitigation type	Impact area [km²]									
Season		Effect	1 source	2 sources – < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources		
		Behavioural response	210	347	464	420	482	674	692		
		TTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09		
Summer	BBC	TTS (cumulative effect)	3.8	306	402	7.6	561	406	565		
	-	PTS (single blow)	0.03	0.03	0.06	0.06	0.06	0.09	0.09		
		PTS (cumulative effect)	0.03	0.03	0.06	0.06	0.06	0.09	0.09		

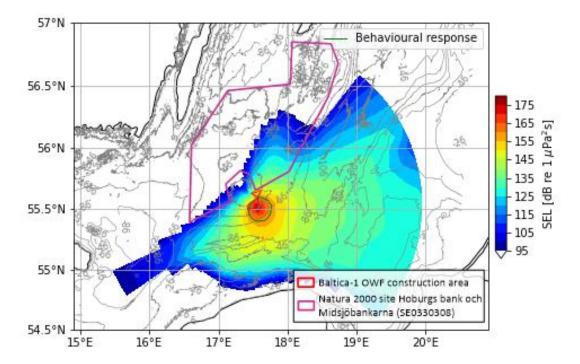


Figure 6.18. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied

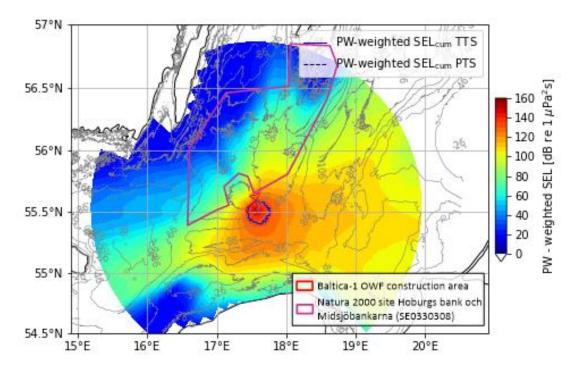


Figure 6.19. The map of PW-weighted SEL_{cum} for piling sources located at a small distance from each other within the Baltica-1 OWF area and the ranges of impact on the grey seal and harbour seal with a BBC applied

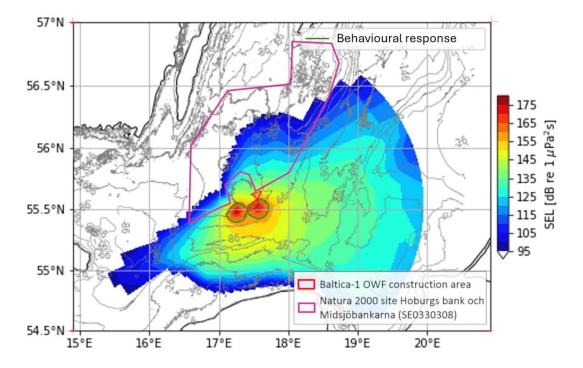
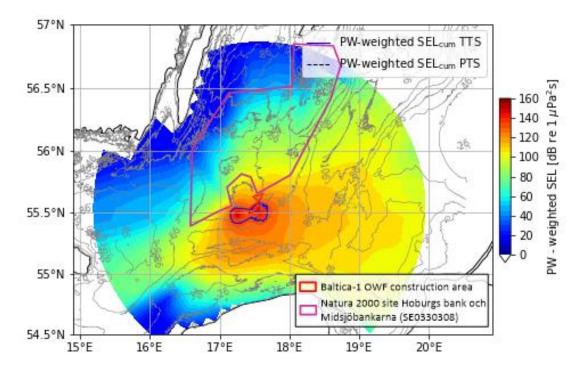



Figure 6.20. The map of unweighted SEL above the acoustic background for piling sources located at a distance of 20 km from each other and the ranges of impact for the grey seal and harbour seal with a BBC applied

Figure 6.21. The map of PW-weighted SEL_{cum} for piling sources located 20 km apart and the impact ranges for the grey seal and harbour seal with a BBC applied

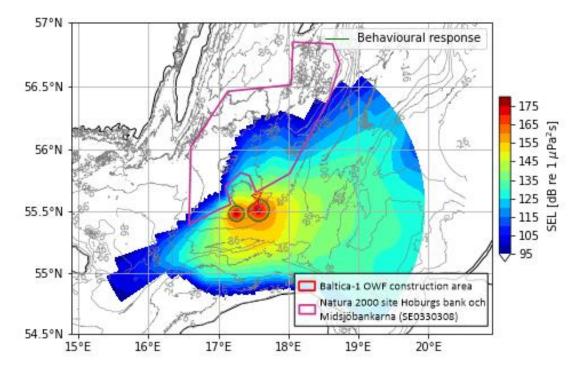


Figure 6.22. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied

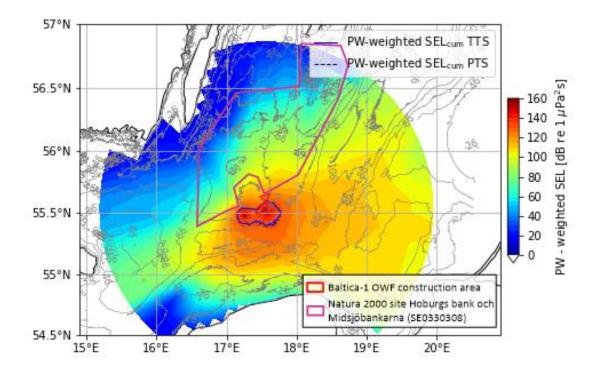


Figure 6.23. The map of PW-weighted SEL_{cum} from three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on the grey seal and harbour seal with a BBC applied

6.2.3 Fish with swim bladders

Similarly to the results obtained for the harbour porpoise and seals, the impact areas for fish with swim bladders increased with the number of piling sources, reaching the highest values in the case of four locations. The impact areas and noise propagation maps are presented in the table below [Table 6.6] and the following figures [Figure 6.24–Figure 6.26].

Table 6.6.The areas of impact on fish with swim bladders in the case of simultaneous piling at several locations within and outside the Baltica-1 area (numbers in bold: the
highest values for 2 and 3 sources, respectively; piling with a BBC mitigation system applied)

Season	Mitigation type	Impact area [km²]								
		Effect	1 source	2 sources - < 1 km	2 sources – 20 km	2 sources – at a significant distance	3 sources – 2 < 1 km, 1 = 20 km	3 sources – 2 = 20 km, 1 = at a significant distance	4 sources	
	BBC	Behavioural response	5197	7110	17131	10394	9163	22328	27525	
		TTS (single blow)	0.1	0.3	0.1	0.2	0.3	0.2	0.4	
Summer		TTS (cumulative effect)	1278	1955	4820	2556	5471	6098	7376	
		Reversible hearing loss (single blow)	0.03	0.03	0.06	0.06	0.06	0.1	0.1	
		Reversible hearing loss (cumulative effect)	73.1	127	170	146	203	243	316	

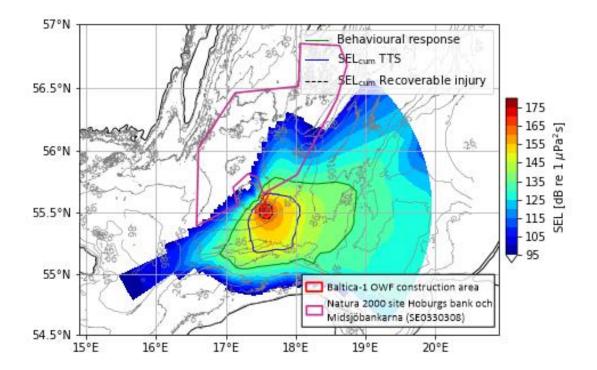


Figure 6.24. The map of unweighted SEL above the acoustic background for piling sources located at a small distance from each other within the Baltica-1 area and the ranges of impact on fish with swim bladders with a BBC applied

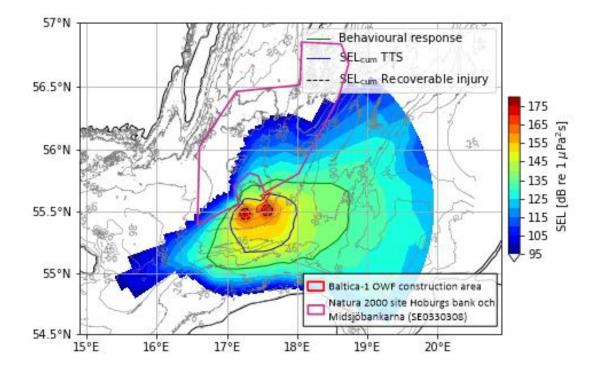


Figure 6.25. The map of unweighted SEL above the acoustic background for piling sources located 20 km apart and the ranges of impact on fish with swim bladders with a BBC applied

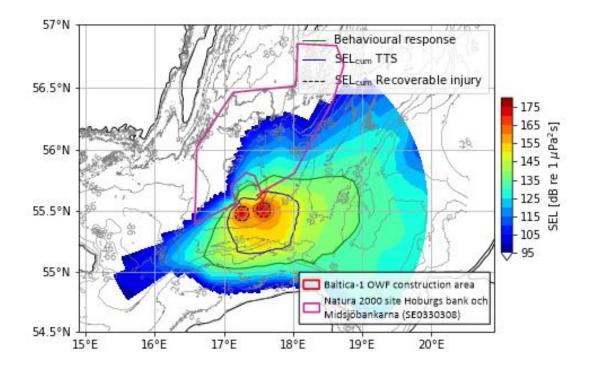


Figure 6.26. The map of unweighted SEL above the acoustic background for three piling sources, two of which are located at a small distance from each other and the third is 20 km away, and the ranges of impact on fish with swim bladders with a BBC applied

6.3 NOISE LEVELS AT THE BOUNDARY OF THE NATURA 2000 AREA

Presented below are levels of noise heard at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna in the summer season. Analyses were conducted for the harbour porpoise, as it is subject to protection in the above-mentioned area, and additionally, the threshold values for this species are the lowest among the values for the analysed mammals.

6.3.1 Piling in a single location

The tables below present the differences between the calculated sound values at the boundary of the Natura 2000 site and the threshold values for scenarios without any mitigation measures applied [Table 6.7] and with the mitigation systems taken into account [Table 6.8]. The corresponding graphs have been developed for the TTS and PTS and presented in the following figures [Figure 6.27–Figure 6.28].

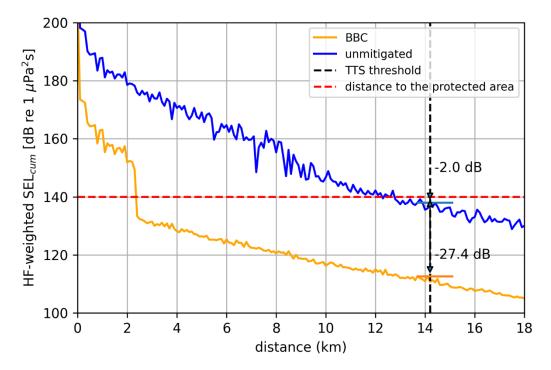

Based on the presented results, it is shown that in the case of piling at a single location, the threshold values of cumulative TTS and PTS will not be exceeded at the boundary of the Swedish Natura 2000 even if no mitigation measures are used. The use of mitigation in the form of a BBC will further contribute to reducing noise to levels well below the determined limits.

Table 6.7.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the cumulative TTS and PTS limits without any mitigation measures
applied

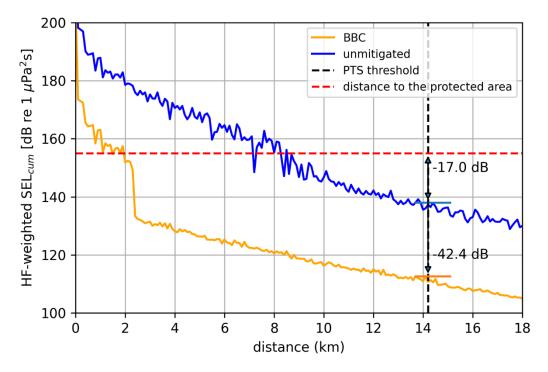

Season		Effect	The threshold value of SEL at the	Without mitigating measures			
	Natura 2000 site		boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL value at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
Summer	Hoburgs bank och	TTS (cumulative effect)	140	138.0	-2.0		
Summer	Midsjöbankarna	PTS (cumulative effect)	155	130.0	-17.0		

Table 6.8.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the SEL-based weighted TTS and PTS limits for the harbour porpoise
with mitigation measures applied

Season		Effect	CEL threshold value at the	With a BBC			
	Natura 2000 site		SEL threshold value at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL value at the boundary of the Natura 2000 site [dB re 1 μPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
Gunnar	Hoburgs bank och	TTS (cumulative effect)	140	112.0	-27.4		
Summer	Midsjöbankarna	PTS (cumulative effect)	155	112.6	-42.4		

Figure 6.27. The propagation w piling noise within the Baltic-1 OWF area in relation to the TTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 6.28. The propagation w piling noise within the Baltic-1 OWF area in relation to the PTS limits for the porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

6.3.2 Piling in several locations

The differences in noise levels between the threshold values and the modelled values at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna were calculated also for simultaneous piling in several locations. The results for different numbers of piling locations are presented in the table below [Table 6.9] for the scenario without mitigation measures applied, and in the following table [Table 6.10] for the scenario with mitigation. The corresponding graphs for the TTS and PTS are presented in the following figures [Figure 6.29–Figure 6.34].

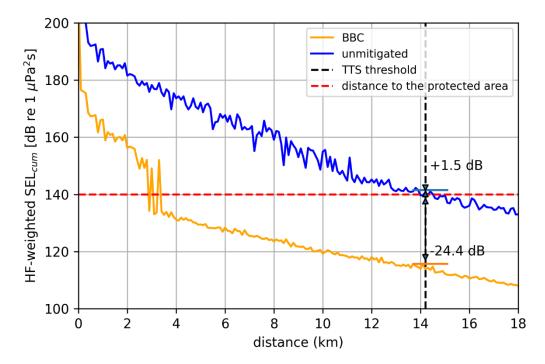
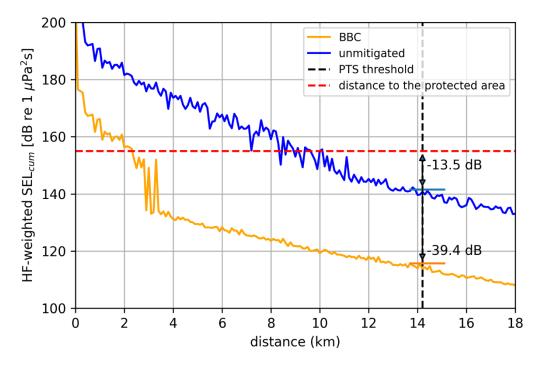
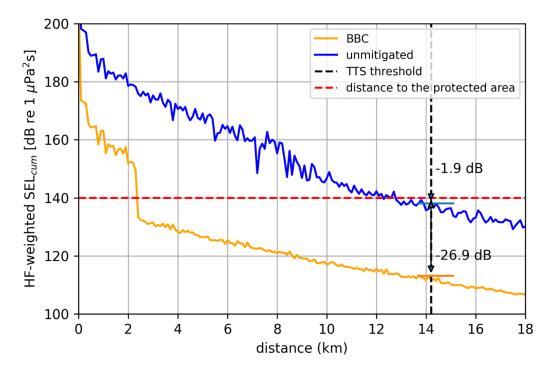
Based on the obtained results, it was concluded that in the case of piling works in several locations, the TTS threshold values will be exceeded on the boundary of the Natura 2000 site in question if two pilings are conducted at a short distance from each other. The use of a mitigation measure in the form of BBC will contribute to reducing noise levels below the designated limit in all analysed scenarios.

Table 6.9.The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of
simultaneous piling in several locations within and outside the Baltica-1 area without any mitigation measures applied

				SEL threshold value at the	Without mitigating measures			
Season	Sound sources	Natura 2000 site	Effect	boundary of the Natura 2000 site [dB re 1 μPa ² s]	The modelled HF-weighted SEL at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The difference in the modelled level of HF-weighted SEL and the threshold value [dB]		
	2 sources – <1 km	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140	141.5	+1.5		
			PTS (cumulative effect)	155	141.5	-13.5		
Common	2 sources – 20 km	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140	120.1	-1.9		
Summer			PTS (cumulative effect)	155	138.1	-16.9		
	3 sources – 2 <1 km, 1 = 20 km	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140		+1.6		
			PTS (cumulative effect)	155	141.6	-13.4		

 Table 6.10.
 The differences in noise levels recorded at the boundary of the Natura 2000 site according to the TTS and PTS limits for the harbour porpoise in the case of simultaneous piling in several locations within and outside the Baltica-1 area with the mitigation measures applied

		Natura 2000 site		The threshold value of SEL	With a BBC		
Season	Sound sources		Effect	at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The modelled HF- weighted SEL at the boundary of the Natura 2000 site [dB re 1 µPa ² s]	The difference in the modelled level of HF- weighted SEL and the threshold value [dB]	
	2 sources –	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140	115.6	-24.4	
	< 1 km		PTS (cumulative effect)	155	115.0	-39.4	
Summer	2 sources –	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140	113.1	-26.9	
Summer	20 km		PTS (cumulative effect)	155	115.1	-41.9	
	3 sources –	Hoburgs bank och Midsjöbankarna	TTS (cumulative effect)	140	115.0	-24.1	
	2 < 1km, 1 = 20 km		PTS (cumulative effect)	155	115.9	-39.1	

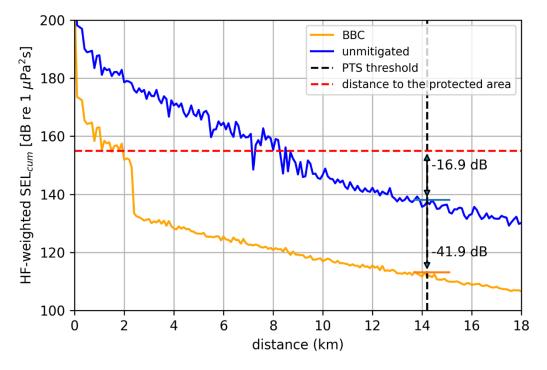

Figure 6.29.The propagation of piling noise from simultaneous piling in two close locations within the
Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura
2000 site Hoburgs bank och Midsjöbankarna

Figure 6.30. The propagation of piling noise from simultaneous piling in two close locations within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 6.31. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 6.32. Noise propagation during simultaneous piling in two locations 20 km apart in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

Figure 6.33. Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the TTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

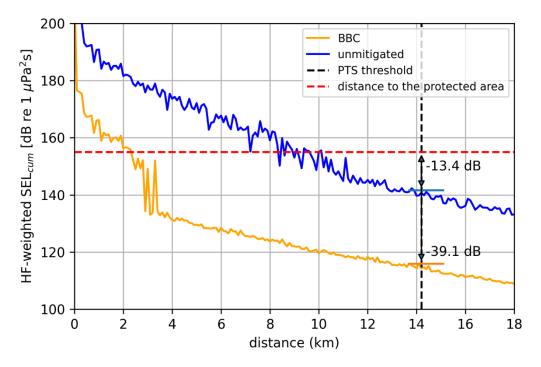


Figure 6.34. Noise propagation during simultaneous piling in two close locations and one located 20 km away within the Baltica-1 OWF area in relation to the PTS limits for the harbour porpoise in the Swedish Natura 2000 site Hoburgs bank och Midsjöbankarna

6.4 IMPACT ON THE NATURA 2000 SITE

The analyses of impact in the Swedish Natura 2000 site were conducted for the behavioural response. They showed that as a result of piling in one location, the range of impact causing behavioural response will not cover the Natura 2000 site if mitigation measures in the form of a BBC are applied.

The impact ranges and the corresponding percentages of coverage of the Swedish Natura 2000 site are presented below [Table 6.11].

Table 6.11.The ranges and areas of impact causing a behavioural response in the harbour porpoise, calculated
for the southern location in the Baltica-1 OWF area and the percentage of coverage of the Natura
2000 site Hoburgs bank och Midsjöbankarna

Season	Mitigation type	Effect	Threshold value	Mean distance [km]	Maximum distance [km]	lmpact area [km²]	The percentage of coverage of the Natura 2000 site [%]	The value of VHF- weighted SPL _{125ms} at the boundary of the Natura 2000 site
Summer	BBC	Behavioural response	103 SPL VHF- weighted	8.8	12.3	251	0	85.6

7 THE SUMMARY OF THE RESULTS AND CONCLUSIONS

To conclude, this analysis has shown that the piling planned to be conducted in the Baltica-1 offshore wind farm area could cause considerable impact ranges and associated impacts on harbour porpoises, seals, and fish with swim bladders. This applies particularly to the results obtained for the winter season and the northern location, where the ranges of the analysed effects in relation to marine mammals and fish with swim bladders were the highest among the analysed scenarios. It should be noted that, in the case of fish, there are still large gaps in knowledge regarding the impact of underwater noise on this group of animals. For this reason, the ranges of impacts obtained in the modelling should be treated with caution. The results presented in the Report may be overestimated, as they are based on conservative assumptions.

The results of the analysis indicated that ranges relative to threshold values were generally higher for the harbour porpoise than those for seal species due to lower threshold values for individual effects and different sound-weighting functions for cetaceans, which use higher frequency sounds than phocids. The largest ranges of impact for marine mammals were obtained for the behavioural response, except for the cumulative TTS for seals. This is due to the good propagation of frequencies, which dominate in the results based on PW-weighted levels combined with the high number of considered blows. The results obtained for the threshold values based on SEL were higher than those obtained for SPL_{peak}. For the fish species, the highest ranges and areas of impact were recorded for the behavioural response.

The results obtained further indicate that the planned piling in the northern part of the Baltica-1 OWF may have a potentially negative impact on the nearby Natura 2000 site if mitigation measures with adequate effectiveness are not applied, in particular, if piling takes place in the winter season.

As shown in the Report, the use of a mitigation measure in the form of a big bubble curtain is likely to lead to an insufficient reduction of noise from piling, especially in the winter season in the northern location. The ranges of impact related especially to the cumulative TTS and behavioural response in all the animal groups discussed remain at a high level. Only the application of the HSD + DBBC or IQIP + DBBC system will lead to a significant reduction in the ranges of impact in relation to the cumulative effects. It is worth emphasising that the application of the IQIP + DBBC system, due to the highest reductions in broadband SEL among all the systems analysed, is characterised by the highest reduction in the value of unweighted SEL, i.e. the behavioural response in seals and all effects in fish with swim bladders, while the expected reductions in cumulative TTS and PTS in the harbour porpoise and seals may be lower than in the case of HSD + DBBC.

It is also important that in the case of piling in the northern location, noise levels at the boundary of the Natura 2000 site Hoburgs bank och Midsjöbankarna are above the threshold values for the TTS and PTS for the harbour porpoise in both analysed seasons. Only the use of a noise reduction system in the form of HSD + DBBC or IQIP + DBBC may reduce the range of cumulative PTS and TTS for the harbour porpoise in the summer season, while none of the analysed measures is sufficient to reduce cumulative TTS in the winter season. The use of the above-mentioned systems does not always provide sufficient reduction of noise levels in the case of simultaneous piling in multiple locations, regardless of the season when piling takes place. In the case of the central and southern locations, due to the greater distance from the protected area, the effectiveness of the mitigation measures used is greater and, as the analyses have indicated, the use of the HSD + DBBC system in the central location and

a single big bubble curtain in the southern location will effectively contribute to reducing noise levels at the boundary of the protected area to an acceptable level.

The estimations of the impact causing a behavioural response in the Natura 2000 site showed that even after the use of noise mitigation measures, the impact on the harbour porpoise may cover at least 2.5% of the area in winter in the case of the northern location. In the case of the summer season, this percentage may be reduced to 0.4% after appropriate mitigation measures are applied. In the case of the central and southern locations, with reductions in the form of HSD + DBBC and BBC, respectively, no impact on the area discussed is expected.

Based on the simulations for a single location, the impact areas for harbour porpoises, seals, and fish with swim bladders were calculated for up to four locations of simultaneous piling at different distances from each other. The results of cumulative simulations were used to define the farthest-reaching scenario for a maximum of four piling locations, which were independent of the distances between the sources and particular locations within the following OWF areas: Bałtyk I, Kriegers Flak I, Kriegers Flak II Nord, Kriegers Flak II Syd, Energy Island Bornholm, Njord, Öland-Hoburg I, Baltic Central, Baltic Offshore Beta, Virrus, Neptunus, Södra Victoria, Bornholm Bassin Øst, and Baltic Edge. The maximum estimated ranges of impact areas are valid for all distances between piling sites, regardless of their location within different OWFs.

8 REFERENCES

- Bellmann, M.A. (2014). Overview of existing Noise Mitigation Systems for reducing Pile-Driving Noise. In Internoise 2014. Melbourne, Australia.
- Bellmann, M.A., Brinkmann, J., May, A., Wendt, T., Gerlach, S., Remmers, P. (2020). Underwater noise during the impulse pile-driving procedure: Influencing factors on pile-driving noise and technical possibilities to comply with noise mitigation values. Supported by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU)), FKZ UM16 881500. Commissioned and managed by the Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie (BSH)), Order No. 10036866. Edited by the itap GmbH.Collins, M. (1993). A split-step Padé solution for the parabolic equation method. The Journal of the Acoustical Society of America, (93): 1736–1742.
- Finneran, J. (2015). Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. The Journal of the Acoustical Society of America, 138 (3): 1702– 1726. doi:10.1121/1.4927418.
- Fofonoff N.P., Millard R.C. (1983). Algorithms for Computation of fundamental properties of Seawater. UNESCO Tech. Pap. Mar. Sci. 1983, 44: 1–53.
- Francois, R.G., Garrison, G.R. (1982a). Sound absorption based on ocean measurements. Part I: Pure water and magnesium sulphate contributions. Journal of the Acoustical Society of America, (72): 896–907.
- Francois, R.G., Garrison, G.R. (1982b). Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. Journal of the Acoustical Society of America, 72: 1879–1890.
- Gündert, S., Bellmann, M.A., Remmers, P. (2015). Offshore Messkampagne 3 (OMK 3) für das Projekt BORA im Offshore-Windpark Borkum Riffgrund I. Hydroakustische Messungen zur Evaluierung der Wirksamkeit des eingesetzten Schallminderungssystems IQIP NMS-6900 und zur Untersuchung der Schallabstrahlung einer Fundamentstruktur (Monopile). Project no. 2271-14. p. 97. Oldenburg: Technische Universität Hamburg-Harburg
- Hawkins, A., Roberts, L., Cheesman, S. (2014). Responses of free-living coastal pelagic fishes to impulsive sounds. J. Acoust. Soc. Am., 135: 3101–3116.
- Hawkins, A. D., Johnson, C., Popper, A. N. (2020). How to set sound exposure criteria for fishes. The Journal of the Acoustical Society of America, 147, 1762–1777.
- Jensen, F., Kuperman, W., Porter, M., Schmidt, H. (2011). Computational Ocean Acoustics. Springer New York, NY.
- Kastelein, R.B. (2002). Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrowband frequency modulated signals. J. Acoust. Soc. Am., 112: 334–344.
- Locarnini, R.A. (2023). World Ocean Atlas 2023, Volume 1: Temperature. A. Mishonov Technical Ed. NOAA Atlas NESDIS.
- MIKE DHI. (2021). UAS in MIKE, Underwater Acoustic Simulation Module, Scientific Documentation.
- NMFS. (2018). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts. Technical Memorandum (No. NMFS-OPR-59): 167.
- NMFS. (2023). National Marine Fisheries Service: Summary of Endangered Species Act acoustic thresholds (marine mammals, fishes and sea turtles).

- Popper, A., Hawkins, A., Fay, R., Mann, D., Bartol, S., Carlson, T., Tavolga, W. (2014). Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. ASA S3/SC1.4 TR-2014.
- Popper, A.N., Hawkins, A.D. (2018). The importance of particle motion to fishes and invertebrates. The Journal of the Acoustical Society of America 143, 470–488.
- Reagan, J.R. (2023). World Ocean Atlas 2023, Volume 2: Salinity. A. Mishonov Technical Ed. NOAA Atlas NESDIS.
- Richardson, W.J. (1995b). Marine Mammals and Noise. San Diego, California, USA.: Academic Press.
- Russell, D., Hastie, G.D., Thompson, D., Janik, V.M., Hammond, P.S., Scott-Hayward, L.A., McConnell, B.J. (2016). Avoidance of wind farms by harbour seals is limited to pile driving activities. Journal of Applied Ecology, 53(6), 1642–1652. https://doi.org/10.1111/1365-2664.12678.
- Skjellerup, P., Maxon, C.M., Tarpgaard, E., Thomsen, F., Schack, H.B., Tougaard, J., Heilskov, N.F. (2015).
 Marine mammals and underwater noise in relation to pile driving. Working Group 2014, (Energinet.dk), pp. 1–20.
- Southall, B., Bowles, A., Ellison, W., Finneran, J., Gentry, R., Greene, J.C., Tyack, P. (2007). Marine mammal noise exposure criteria: initial scientific recommendations. Aquatic Mammals (33): 411–521.
- Southall, B., Finneran, J., Reichmuth, C., Nachtigall, P., Ketten, D., Bowles, A., Tyack, P. (2019). Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects. Aquatic Mammals, (45): 125–232.
- Spence J., Fischer R., Bahtiarian M., Boroditsky L., Jones N., Dempsey R. (2007). Review of Existing and Future Potential Treatments for Reducing Underwater Sound from Oil and Gas Industry Activities, London: Joint Industry Programme on E&P Sound and Marine Life.
- Thomsen, F., Lüdemann, K., Kafemann, R., Piper, W. (2006). Effects of offshore wind farm noise on marine mammals and fish, biola. Hamburg, Germany on behalf of COWRIE Ltd. 2006.
- Thomsen, F., Mendes, S., Bertucci, F., Breitzke, M., Ciappi, E., Cresci, A., dos Santos, M.E. (2021).
 Addressing underwater noise in Europe: Current state of knowledge and future priorities. Future
 Science Brief 7 of the European Marine Board (Ed. by P. Kellett, R. van den Brand, B. Alexander,
 A. Muniz Piniella, A. Rodriguez Perez, J. van Elslander & J.
- Tougaard, J. (2021). Thresholds for behavioural responses to noise in marine mammals. Background note to revision of guidelines from the Danish Energy, Aarhus University, DCE Danish Centre for Environment and Energy. Technical Report No. 225.
- von Pein, J., Lippert, S., von Estorff, O. (2021). Validation of a finite element modelling approach for mitigated and unmitigated pile driving noise prognosis. The Journal of the Acoustical Society of America, 149.
- von Pein, J., Lippert, T., Lippert, S. von Estorff, O. (2022). Scaling laws for unmitigated pile driving: Dependence of underwater noise on strike energy, pile diameter, ram weight, and water depth. Applied Acoustics, 198, 108986.
- von Pein, J. (2024). Scaling Laws for Offshore Pile Driving Noise and Bathymetry Induced 3D Effects. PhD thesis from Hamburg University of Technology, Shaker Verlag, Düren Germany.